메뉴 건너뛰기




Volumn 61, Issue 3, 2005, Pages 837-846

Missing covariates in longitudinal data with informative dropouts: Bias analysis and inference

Author keywords

Asymptotic bias; EM algorithm; Missing data; Random effects; Sensitivity analysis; Transition model

Indexed keywords

INFERENCE ENGINES; RANDOM PROCESSES; STATISTICAL METHODS; VIRUSES;

EID: 27744463539     PISSN: 0006341X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2005.00340.x     Document Type: Article
Times cited : (13)

References (15)
  • 1
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed models likelihoods with an automated Monte Carlo EM algorithm
    • Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed models likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society. Series B 61, 265-285.
    • (1999) Journal of the Royal Statistical Society. Series B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 3
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (with discussion)
    • Diggle, P. and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-94.
    • (1994) Applied Statistics , vol.43 , pp. 49-94
    • Diggle, P.1    Kenward, M.G.2
  • 4
    • 0033474233 scopus 로고    scopus 로고
    • Missing covariates in generalized linear models when the missing data mechanism is non-ignorable
    • Ibrahim, J. G., Lipsitz, S. R., and Chen, M.-H. (1999). Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society. Series B 61, 173-190.
    • (1999) Journal of the Royal Statistical Society. Series B , vol.61 , pp. 173-190
    • Ibrahim, J.G.1    Lipsitz, S.R.2    Chen, M.-H.3
  • 5
    • 0037507563 scopus 로고    scopus 로고
    • Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable
    • Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88, 551-564.
    • (2001) Biometrika , vol.88 , pp. 551-564
    • Ibrahim, J.G.1    Chen, M.-H.2    Lipsitz, S.R.3
  • 6
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistical Association 90, 1112-1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 7
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B 44, 226-233.
    • (1982) Journal of the Royal Statistical Society. Series B , vol.44 , pp. 226-233
    • Louis, T.1
  • 9
    • 0036489043 scopus 로고    scopus 로고
    • Analysis of multivariate longitudinal outcomes with non-ignorable dropouts and missing covariates: Changes in methadone treatment practices
    • Roy, J. and Lin, X. (2002). Analysis of multivariate longitudinal outcomes with non-ignorable dropouts and missing covariates: Changes in methadone treatment practices. Journal of the American Statistical Association 97, 40-52.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 40-52
    • Roy, J.1    Lin, X.2
  • 10
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussions)
    • Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussions). Journal of the American Statistical Association 94, 1096-1120.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1096-1120
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 11
    • 0030794925 scopus 로고    scopus 로고
    • Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in US women
    • Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein, M. D., Greenberg, B. L., and Holmberg, S. D. (1997). Design and baseline participant characteristics of human immunodeficiency virus epidemiology research (HER) study: A prospective cohort study of human immunodeficiency virus infection in US women. American Journal of Epidemiology 146, 459-469.
    • (1997) American Journal of Epidemiology , vol.146 , pp. 459-469
    • Smith, D.K.1    Warren, D.L.2    Vlahov, D.3    Schuman, P.4    Stein, M.D.5    Greenberg, B.L.6    Holmberg, S.D.7
  • 12
    • 0346102882 scopus 로고    scopus 로고
    • Maximum likelihood methods for nonignorable missing responses and covariates in random effects models
    • Stubbendick, A. L. and Ibrahim, J. G. (2003). Maximum likelihood methods for nonignorable missing responses and covariates in random effects models. Biometrics 59, 1140-1150.
    • (2003) Biometrics , vol.59 , pp. 1140-1150
    • Stubbendick, A.L.1    Ibrahim, J.G.2
  • 13
    • 0035893108 scopus 로고    scopus 로고
    • A longitudinal analysis of hospitalization and emergency department use among human immunodeficiency virus-infected women reporting protease inhibitor use
    • Tashima, K. T., Hogan, J. W., Gardner, L. I., Korkontzelou, C., Schoenbaum, E. E., Schuman, P., Rompalo, A., and Carpenter, C. C. J. (2001). A longitudinal analysis of hospitalization and emergency department use among human immunodeficiency virus-infected women reporting protease inhibitor use. Clinical Infectious Diseases 33, 2055-2060.
    • (2001) Clinical Infectious Diseases , vol.33 , pp. 2055-2060
    • Tashima, K.T.1    Hogan, J.W.2    Gardner, L.I.3    Korkontzelou, C.4    Schoenbaum, E.E.5    Schuman, P.6    Rompalo, A.7    Carpenter, C.C.J.8
  • 14
    • 0035102436 scopus 로고    scopus 로고
    • Sensitivity analysis for nonrandom dropout: A local influence approach
    • Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., and Kenward, M. G. (2001). Sensitivity analysis for nonrandom dropout: A local influence approach. Biometrics 57, 7-14.
    • (2001) Biometrics , vol.57 , pp. 7-14
    • Verbeke, G.1    Molenberghs, G.2    Thijs, H.3    Lesaffre, E.4    Kenward, M.G.5
  • 15
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association 85, 699-704. 837
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.