메뉴 건너뛰기




Volumn 25, Issue 10, 2004, Pages 1123-1132

Improving fuzzy c-means clustering based on feature-weight learning

Author keywords

Fuzziness; Fuzzy c means; Gradient descent technique; Similarity measure; Weighted fuzzy c means

Indexed keywords

DATABASE SYSTEMS; FUZZY CONTROL;

EID: 2942534051     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2004.03.008     Document Type: Article
Times cited : (311)

References (25)
  • 1
    • 0032155316 scopus 로고    scopus 로고
    • Unsupervised feature selection using a neuro-fuzzy approach
    • Basak J. De R.K. Pal S.K. Unsupervised feature selection using a neuro-fuzzy approach Pattern Recog. Lett. 19 1998 997-1006
    • (1998) Pattern Recog. Lett. , vol.19 , pp. 997-1006
    • Basak, J.1    De, R.K.2    Pal, S.K.3
  • 2
    • 0033683275 scopus 로고    scopus 로고
    • Maximum entropy and maximum likelihood criteria for feature selection from multivariate data
    • Basu S. Micchelli C.A. Olsen P. Maximum entropy and maximum likelihood criteria for feature selection from multivariate data Proc. IEEE Int. Symp. Circuits Syst. III 2000 267-270
    • (2000) Proc. IEEE Int. Symp. Circuits Syst. , vol.3 , pp. 267-270
    • Basu, S.1    Micchelli, C.A.2    Olsen, P.3
  • 3
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • Bezdek J.C. Cluster validity with fuzzy sets J. Cybernetics 3 3 1974 58-73
    • (1974) J. Cybernetics , vol.3 , Issue.3 , pp. 58-73
    • Bezdek, J.C.1
  • 6
    • 2942611761 scopus 로고
    • Statistical parameters of fuzzy cluster validity functionals
    • Bezdek J.C. Windham M. Ehrlich R. Statistical parameters of fuzzy cluster validity functionals Comput. Inform. Sci. 9 1980 232-236
    • (1980) Comput. Inform. Sci. , vol.9 , pp. 232-236
    • Bezdek, J.C.1    Windham, M.2    Ehrlich, R.3
  • 9
    • 0015340630 scopus 로고
    • A definition of a non-probabilistic entropy in the setting of fuzzy set theory
    • De Luca A. Termini S. A definition of a non-probabilistic entropy in the setting of fuzzy set theory Inform. Control 20 1972 301-312
    • (1972) Inform. Control , vol.20 , pp. 301-312
    • De Luca, A.1    Termini, S.2
  • 11
    • 0016046280 scopus 로고
    • Some recent investigations of a new fuzzy partition algorithm and its application to pattern classification problems
    • Dunn J.C. Some recent investigations of a new fuzzy partition algorithm and its application to pattern classification problems J. Cybernetics 4 1974 1-15
    • (1974) J. Cybernetics , vol.4 , pp. 1-15
    • Dunn, J.C.1
  • 12
    • 0042459889 scopus 로고
    • Indices of partition fuzziness and the detection of clusters in large data sets
    • M. M. Gupta (Ed.), New York: Elsevier
    • Dunn J.C. Indices of partition fuzziness and the detection of clusters in large data sets Gupta M.M. Fuzzy Automata and Decision Process 1976 Elsevier New York
    • (1976) Fuzzy Automata and Decision Process
    • Dunn, J.C.1
  • 14
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. The use of multiple measurements in taxonomic problems Ann. Eugenics 7 1936 179-188
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 15
    • 0001404416 scopus 로고
    • A new method of choosing the number of clusters for the fuzzy c-means method
    • Fukuyama, Y., Sugeno, M., 1989. A new method of choosing the number of clusters for the fuzzy c-means method. In: Proceedings of 5th Fuzzy System Symposium, pp. 247-250
    • (1989) Proceedings of 5th Fuzzy System Symposium , pp. 247-250
    • Fukuyama, Y.1    Sugeno, M.2
  • 17
    • 0026925678 scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmentation magnetic resonance images of the brain
    • Hall L.O. Bensaid A.M. Clarke L.P. A comparison of neural network and fuzzy clustering techniques in segmentation magnetic resonance images of the brain IEEE Trans. Neural Networks 3 1992 672-682
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 672-682
    • Hall, L.O.1    Bensaid, A.M.2    Clarke, L.P.3
  • 18
    • 0032595163 scopus 로고    scopus 로고
    • A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms
    • Krishnapuram R. Kim J. A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms IEEE Trans. Fuzzy Syst. 7 1999 453-461
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , pp. 453-461
    • Krishnapuram, R.1    Kim, J.2
  • 20
    • 0033751612 scopus 로고    scopus 로고
    • Unsupervised feature evaluation: A neuro-fuzzy approach
    • Pal S.K. De R.K. Basak J. Unsupervised feature evaluation: A neuro-fuzzy approach IEEE Trans. Neural Networks 11 2000 366-376
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 366-376
    • Pal, S.K.1    De, R.K.2    Basak, J.3
  • 22
    • 0036779072 scopus 로고    scopus 로고
    • Alternative c-means clustering algorithms
    • Wu K.L. Yang M.S. Alternative c-means clustering algorithms Pattern Recog. 35 2002 2267-2278
    • (2002) Pattern Recog. , vol.35 , pp. 2267-2278
    • Wu, K.L.1    Yang, M.S.2
  • 24
    • 0036538165 scopus 로고    scopus 로고
    • Improving performance of similarity-based clustering by feature weight learning
    • Yeung D.S. Wang X.Z. Improving performance of similarity-based clustering by feature weight learning IEEE Trans. Pattern Anal. Machine Intell. 24 4 2002 556-561
    • (2002) IEEE Trans. Pattern Anal. Machine Intell. , vol.24 , Issue.4 , pp. 556-561
    • Yeung, D.S.1    Wang, X.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.