-
2
-
-
0004293179
-
-
Kirby, A. J. Oxford University Press: Bath, U.K., Chapter 5
-
Stereoelectronic Effects; Kirby, A. J. Oxford University Press: Bath, U.K., 1998; Chapter 5.
-
(1998)
Stereoelectronic Effects
-
-
-
3
-
-
33645909573
-
-
(a) Alexakis, A.; Malan, C.; Lea, L.; Tissot-Croset, K.; Polet, D.; Falciola, C. Chimia 2006, 60, 124.
-
(2006)
Chimia
, vol.60
, pp. 124
-
-
Alexakis, A.1
Malan, C.2
Lea, L.3
Tissot-Croset, K.4
Polet, D.5
Falciola, C.6
-
5
-
-
36849070454
-
-
For recent applications in synthesis, see: (a)
-
For recent applications in synthesis, see: (a) Smith, A. B., III; Basu, K.; Bosanac, T. J. Am. Chem. Soc. 2007, 129, 14872.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 14872
-
-
Smith III, A.B.1
Basu, K.2
Bosanac, T.3
-
6
-
-
33947536344
-
-
(b) Kashin, D.; Meyer, A.; Wittenberg, R.; Schöning, K.-U.; Kamlage, S.; Kirschning, A. Synthesis 2007, 304.
-
(2007)
Synthesis
, pp. 304
-
-
Kashin, D.1
Meyer, A.2
Wittenberg, R.3
Schöning, K.-U.4
Kamlage, S.5
Kirschning, A.6
-
8
-
-
32644438627
-
-
(d) Mandal, A. K.; Schneekloth, J. S., Jr.; Kuramochi, K.; Crews, C. M. Org. Lett. 2006, 8, 427.
-
(2006)
Org. Lett.
, vol.8
, pp. 427
-
-
Mandal, A.K.1
Schneekloth Jr., J.S.2
Kuramochi, K.3
Crews, C.M.4
-
10
-
-
0034699201
-
-
(f) Tada, M.; Nishiiri, S.; Zhixiang, Y.; Imai, Y.; Tajima, S.; Okazaki, N.; Kitano, Y.; Chiba, K. J. Chem. Soc., Perkin Trans. 1 2000, 2657.
-
(2000)
J. Chem. Soc., Perkin Trans. 1
, pp. 2657
-
-
Tada, M.1
Nishiiri, S.2
Zhixiang, Y.3
Imai, Y.4
Tajima, S.5
Okazaki, N.6
Kitano, Y.7
Chiba, K.8
-
11
-
-
44949142206
-
-
For recent examples, see: (a)
-
For recent examples, see: (a) White, J. D.; Lincoln, C. M.; Yang, J.; Martin, W. H. C.; Chan, D. B. J. Org. Chem. 2008, 73, 4139.
-
(2008)
J. Org. Chem.
, vol.73
, pp. 4139
-
-
White, J.D.1
Lincoln, C.M.2
Yang, J.3
Martin, W.H.C.4
Chan, D.B.5
-
12
-
-
48849105550
-
-
(b) Arteaga, J. F.; Domingo, V.; Quílez del Moral, J. F.; Barrero, A. F. Org. Lett. 2008, 10, 1723.
-
(2008)
Org. Lett.
, vol.10
, pp. 1723
-
-
Arteaga, J.F.1
Domingo, V.2
Quílez Del Moral, J.F.3
Barrero, A.F.4
-
14
-
-
34249005218
-
-
(d) Chow, S. Y.; Williams, H. J.; Pennington, J. D.; Nanda, S.; Reibenspies, J. H.; Scott,A. I. Tetrahedron 2007, 63, 6204.
-
(2007)
Tetrahedron
, vol.63
, pp. 6204
-
-
Chow, S.Y.1
Williams, H.J.2
Pennington, J.D.3
Nanda, S.4
Reibenspies, J.H.5
Scott, A.I.6
-
15
-
-
34247247627
-
-
(e)Wang, Y.;Ma, J.; Cheon,H.-S.; Kishi, Y. Angew. Chem., Int. Ed. 2007, 46, 1333.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 1333
-
-
Wang, Y.1
Ma, J.2
Cheon, H.-S.3
Kishi, Y.4
-
16
-
-
33846585033
-
-
(f) Ma, J.; Cheon, H.-S.; Kishi, Y. Org. Lett. 2007, 9, 319.
-
(2007)
Org. Lett.
, vol.9
, pp. 319
-
-
Ma, J.1
Cheon, H.-S.2
Kishi, Y.3
-
18
-
-
32644451558
-
-
(h) Yoshimura, T.; Yakushiji, F.; Kondo, S.; Wu, X.; Shindo, M.; Shishido, K. Org. Lett. 2006, 8, 475.
-
(2006)
Org. Lett.
, vol.8
, pp. 475
-
-
Yoshimura, T.1
Yakushiji, F.2
Kondo, S.3
Wu, X.4
Shindo, M.5
Shishido, K.6
-
19
-
-
28044454336
-
-
(i) Chow, S. Y.; Williams, H. J.; Huang, Q.; Nanda, S.; Scott, A. I. J. Org. Chem. 2005, 70, 9997.
-
(2005)
J. Org. Chem.
, vol.70
, pp. 9997
-
-
Chow, S.Y.1
Williams, H.J.2
Huang, Q.3
Nanda, S.4
Scott, A.I.5
-
20
-
-
18844403663
-
-
(j) Brittain, D. E. A.; Griffiths-Jones,C.M.; Linder,M.R.; Smith, M. D.;McCusker, C.; Barlow, J. S.;Akiyama,R.; Yasuda,K.; Ley, S. V. Angew. Chem., Int. Ed. 2005, 44, 2732.
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 2732
-
-
Brittain, D.E.A.1
Griffiths-Jones, C.M.2
Linder, M.R.3
Smith, M.D.4
McCusker, C.5
Barlow, J.S.6
Akiyama, R.7
Yasuda, K.8
Ley, S.V.9
-
22
-
-
0036391367
-
-
(l) Oishi, T.; Ando,K.; Inomiya, K.; Sato, H.; Iida, M.; Chida,N. Bull. Chem. Soc. Jpn. 2002, 75, 1927.
-
(2002)
Bull. Chem. Soc. Jpn.
, vol.75
, pp. 1927
-
-
Oishi, T.1
Ando, K.2
Inomiya, K.3
Sato, H.4
Iida, M.5
Chida, N.6
-
24
-
-
0037134189
-
-
(n) Chun, J.; Li, G.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2002, 67, 2600.
-
(2002)
J. Org. Chem.
, vol.67
, pp. 2600
-
-
Chun, J.1
Li, G.2
Byun, H.-S.3
Bittman, R.4
-
27
-
-
0033795249
-
-
(q) Schinzer, D.; Muller, N.; Fischer, A. K.; Priess, J. W. Synlett 2000, 1265.
-
(2000)
Synlett
, pp. 1265
-
-
Schinzer, D.1
Muller, N.2
Fischer, A.K.3
Priess, J.W.4
-
28
-
-
0034659974
-
-
(r) Ramaseshan, M.; Robitaille, M.; Ellingboe, J. W.; Dory, Y. L.; Deslongchamps, P. Tetrahedron Lett. 2000, 41, 4737.
-
(2000)
Tetrahedron Lett.
, vol.41
, pp. 4737
-
-
Ramaseshan, M.1
Robitaille, M.2
Ellingboe, J.W.3
Dory, Y.L.4
Deslongchamps, P.5
-
30
-
-
33845559094
-
-
(a) Magid, R. M.; Fruchey, O. S.; Johnson, W. L.; Allen, T. G. J. Org. Chem. 1979, 44, 359.
-
(1979)
J. Org. Chem.
, vol.44
, pp. 359
-
-
Magid, R.M.1
Fruchey, O.S.2
Johnson, W.L.3
Allen, T.G.4
-
33
-
-
84970586013
-
-
Boughdady, N. M.; Chynoweth, K. R.; Hewitt, D. G. Aust. J. Chem. 1987, 40, 767.
-
(1987)
Aust. J. Chem.
, vol.40
, pp. 767
-
-
Boughdady, N.M.1
Chynoweth, K.R.2
Hewitt, D.G.3
-
38
-
-
1242295926
-
-
Baker, C. S.; Landor, P. D.; Landor, S. R.; Patel, A. N. J. Chem. Soc. 1965, 4348.
-
(1965)
J. Chem. Soc.
, pp. 4348
-
-
Baker, C.S.1
Landor, P.D.2
Landor, S.R.3
Patel, A.N.4
-
39
-
-
61349124101
-
-
For recent examples, see: (a)
-
For recent examples, see: (a) Braddock, D. C.; Bhuva, R.; Perez- Fuertes, Y.; Pouwer, R.; Roberts, C. A.; Ruggiero, A.; Stokes, E. S. E.; White, A. J. P. Chem. Commun. 2008, 1419.
-
(2008)
Chem. Commun.
, pp. 1419
-
-
Braddock, D.C.1
Bhuva, R.2
Perez- Fuertes, Y.3
Pouwer, R.4
Roberts, C.A.5
Ruggiero, A.6
Stokes, E.S.E.7
White, A.J.P.8
-
40
-
-
38649108487
-
-
(b) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 1440
-
-
Dudnik, A.S.1
Sromek, A.W.2
Rubina, M.3
Kim, J.T.4
Kel'in, A.V.5
Gevorgyan, V.6
-
42
-
-
34347223272
-
-
(d) Prak, J.; Kim, B.; Kim, H.; Kim, S.; Kim, D. Angew. Chem., Int. Ed. 2007, 46, 4726.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 4726
-
-
Prak, J.1
Kim, B.2
Kim, H.3
Kim, S.4
Kim, D.5
-
43
-
-
34250881520
-
-
(e) Jian, Y.-J.; Tang, C.-J.; Wu, Y. J. Org. Chem. 2007, 72, 4851.
-
(2007)
J. Org. Chem.
, vol.72
, pp. 4851
-
-
Jian, Y.-J.1
Tang, C.-J.2
Wu, Y.3
-
45
-
-
34250666515
-
-
(g) Hamaguchi, H.; Kosaka, S.; Ohno, H.; Fujii, N.; Tanaka, T. Chem.-Eur. J. 2007, 13, 1692.
-
(2007)
Chem.-Eur. J.
, vol.13
, pp. 1692
-
-
Hamaguchi, H.1
Kosaka, S.2
Ohno, H.3
Fujii, N.4
Tanaka, T.5
-
46
-
-
33747275056
-
-
(h) Boukouvalas, J.; Pouliot, M.; Robichaud, J.; MacNeil, S.; Snieckus, V. Org. Lett. 2006, 8, 3597.
-
(2006)
Org. Lett.
, vol.8
, pp. 3597
-
-
Boukouvalas, J.1
Pouliot, M.2
Robichaud, J.3
MacNeil, S.4
Snieckus, V.5
-
47
-
-
23044485049
-
-
(i) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 10500
-
-
Sromek, A.W.1
Rubina, M.2
Gevorgyan, V.3
-
48
-
-
16244407181
-
-
(j) Hamaguchi, H.; Kosaka, S.; Ohno, H.; Tanaka, T. Angew Chem., Int. Ed. 2005, 44, 1513.
-
(2005)
Angew Chem., Int. Ed.
, vol.44
, pp. 1513
-
-
Hamaguchi, H.1
Kosaka, S.2
Ohno, H.3
Tanaka, T.4
-
49
-
-
3242672213
-
-
(k) Ohno, H.; Hamaguchi, H.; Ohata, M.; Kosaka, S.; Tanaka, T. J. Am. Chem. Soc. 2004, 126, 8744.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 8744
-
-
Ohno, H.1
Hamaguchi, H.2
Ohata, M.3
Kosaka, S.4
Tanaka, T.5
-
50
-
-
0037424749
-
-
(l) Saitoh, T.; Suzuki, T.; Sugimoto, M.; Hagiwara, H.; Hoshi, T. Tetrahedron Lett. 2003, 44, 3175.
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 3175
-
-
Saitoh, T.1
Suzuki, T.2
Sugimoto, M.3
Hagiwara, H.4
Hoshi, T.5
-
51
-
-
0347928822
-
-
(m) Ohno, H.; Ando, K.; Hamaguchi, H.; Takeoka, Y.; Tanaka, T. J. Am. Chem. Soc. 2002, 124, 15255.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 15255
-
-
Ohno, H.1
Ando, K.2
Hamaguchi, H.3
Takeoka, Y.4
Tanaka, T.5
-
52
-
-
0037017718
-
-
(n) Crimmins, M. T.; Emmitte, K. A.; Choy, A. L. Tetrahedron 2002, 58 (10), 1817.
-
(2002)
Tetrahedron
, vol.58
, Issue.10
, pp. 1817
-
-
Crimmins, M.T.1
Emmitte, K.A.2
Choy, A.L.3
-
53
-
-
0035954878
-
-
(o) Ohno, H.; Hamaguchi, H.; Tanaka, T. Org. Lett. 2001, 3, 2269.
-
(2001)
Org. Lett.
, vol.3
, pp. 2269
-
-
Ohno, H.1
Hamaguchi, H.2
Tanaka, T.3
-
55
-
-
51549093962
-
-
(a) Vaz, B.; Pereira, R.; Perez, M.; Alvarez, R.; de Lera, A. R. J. Org. Chem. 2008, 73, 6534.
-
(2008)
J. Org. Chem.
, vol.73
, pp. 6534
-
-
Vaz, B.1
Pereira, R.2
Perez, M.3
Alvarez, R.4
De Lera, A.R.5
-
57
-
-
0034245863
-
-
(c) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.
-
(2000)
Chem. Rev.
, vol.100
, pp. 3067
-
-
Zimmer, R.1
Dinesh, C.U.2
Nandanan, E.3
Khan, F.A.4
-
58
-
-
4544320494
-
-
Krause, N., Hashmi, A. S. K., Eds., Wiley: Weinheim, Germany
-
Modern Allene Chemistry, Krause, N., Hashmi, A. S. K., Eds., Wiley: Weinheim, Germany 2004.
-
(2004)
Modern Allene Chemistry
-
-
-
59
-
-
70349769724
-
-
For the development of "chemically economical" strategies, see
-
For the development of "chemically economical" strategies, see: Burns, N. Z; Baran, P. S; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854.
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 2854
-
-
Burns, N.Z.1
Baran, P.S.2
Hoffmann, R.W.3
-
60
-
-
36448991961
-
-
For related metallotropic rearrangements with allylic alcohols, see: a
-
For related metallotropic rearrangements with allylic alcohols, see: a) Fox, R. J.; Lalic, G.; Bergman, R. G. J. Am. Chem. Soc. 2007, 129, 14144.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 14144
-
-
Fox, R.J.1
Lalic, G.2
Bergman, R.G.3
-
61
-
-
33749139719
-
-
b) Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813.
-
(2006)
J. Org. Chem.
, vol.71
, pp. 7813
-
-
Morrill, C.1
Beutner, G.L.2
Grubbs, R.H.3
-
63
-
-
0347028800
-
-
d) Belgacem, J.; Kress, J.; Osborn, J. A. J. Am. Chem. Soc. 1992, 114, 1501.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 1501
-
-
Belgacem, J.1
Kress, J.2
Osborn, J.A.3
-
64
-
-
0003595178
-
-
(e) Matsubara, S.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1983, 24, 3741.
-
(1983)
Tetrahedron Lett.
, vol.24
, pp. 3741
-
-
Matsubara, S.1
Takai, K.2
Nozaki, H.3
-
65
-
-
70349465588
-
-
For a summary of sigmatropic rearrangements of propargyl-type π-systems to allenic derivatives, see: 2005 and references therein
-
For a summary of sigmatropic rearrangements of propargyl-type π-systems to allenic derivatives, see: Banert, K. Liebigs Ann/Recuil 1997, 2005 and references therein.
-
(1997)
Liebigs Ann/Recuil
-
-
Banert, K.1
-
71
-
-
4444356919
-
-
4 and NaI, see
-
4 and NaI, see: Firouzabadi, H.; Iranpoor, N.; Jafarpour, M. Tetrahedron Lett. 2004, 45, 7451.
-
(2004)
Tetrahedron Lett.
, vol.45
, pp. 7451
-
-
Firouzabadi, H.1
Iranpoor, N.2
Jafarpour, M.3
-
73
-
-
55749084181
-
-
Refluxing the bromomagnesium alkoxide intermediate does not afford any allylic bromide
-
Bouziane, A.; Carboni, B.; Bruneau, C.; Carreaux, F.; Renaud, J.-L. Tetrahedron 2008, 64, 11745. Refluxing the bromomagnesium alkoxide intermediate does not afford any allylic bromide.
-
(2008)
Tetrahedron
, vol.64
, pp. 11745
-
-
Bouziane, A.1
Carboni, B.2
Bruneau, C.3
Carreaux, F.4
Renaud, J.-L.5
-
74
-
-
70349468648
-
-
note
-
A search using SciFinder Scholar identified over 4,000 reactions in which vinylmagnesium bromide affords an allylic alcohol (04/27/09).
-
-
-
-
75
-
-
70349454893
-
-
note
-
A control experiment in which non-1-en-3-ol was treated with vinylmagnesium bromide led only to recovered alcohol, establishing that the bromomagnesium alkoxide does not participate in a bromo-[3,3] rearrangment.
-
-
-
-
76
-
-
70349461829
-
-
note
-
KH was consistently superior over MeMgCl, BuLi, and NaH.
-
-
-
-
77
-
-
0032558912
-
-
For the strong M-O bond energy in the series Ti-O, Zr-O, Nb-O, see: (a)
-
For the strong M-O bond energy in the series Ti-O, Zr-O, Nb-O, see: (a) Loock, H.-P.; Simard, B.; Wallin, S.; Linton, C. J. Chem. Phys. 1998, 109, 8980.
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 8980
-
-
Loock, H.-P.1
Simard, B.2
Wallin, S.3
Linton, C.4
-
82
-
-
70349460574
-
-
note
-
Dry niobium pentachloride powder was weighed in a glovebox and transferred directly to the reaction flask under a blanket of dry nitrogen.
-
-
-
-
83
-
-
0034596922
-
-
5 is expected to be of similar, though unknown, acidity
-
5 is expected to be of similar, though unknown, acidity: Kobayashi, S.; Busujima, T.; Nagayama, S. Chem.-Eur. J. 2000, 6, 3491.
-
(2000)
Chem.-Eur. J.
, vol.6
, pp. 3491
-
-
Kobayashi, S.1
Busujima, T.2
Nagayama, S.3
-
85
-
-
38849158426
-
-
N2′ displacements
-
N2′ displacements: Kishali, N.; Polat, M. F.; Altundas, R.; Kara, Y. Helv. Chim. Acta 2008, 91, 67.
-
(2008)
Helv. Chim. Acta
, vol.91
, pp. 67
-
-
Kishali, N.1
Polat, M.F.2
Altundas, R.3
Kara, Y.4
-
86
-
-
70349458615
-
-
note
-
See ref 10.
-
-
-
-
87
-
-
70349447445
-
-
The instability of allylic halides has been noted previously: (a)
-
The instability of allylic halides has been noted previously: (a) Levina, R. Y.; Kaikaris, P. A.; Simolin, A. V.; Treshchova, E. G. Zh. Obshch. Khim. 1958, 28, 2309.
-
(1958)
Zh. Obshch. Khim.
, vol.28
, pp. 2309
-
-
Levina, R.Y.1
Kaikaris, P.A.2
Simolin, A.V.3
Treshchova, E.G.4
-
90
-
-
0011789771
-
-
Takeda, K.; Shibata, Y.; Sagawa, Y.; Urahata, M.; Funaki, K.; Hori, K.; Sasahara, H.; Yoshii, E. J. Org. Chem. 1985, 50, 4673.
-
(1985)
J. Org. Chem.
, vol.50
, pp. 4673
-
-
Takeda, K.1
Shibata, Y.2
Sagawa, Y.3
Urahata, M.4
Funaki, K.5
Hori, K.6
Sasahara, H.7
Yoshii, E.8
-
91
-
-
70349450556
-
-
note
-
The niobium-based chlorination tolerates excess KH.
-
-
-
-
92
-
-
0003965863
-
-
Presumably because of the low solvent polarity, which has a dielectric constant of 2.209 at 25 °C: Weast, R. C., Ed.; CRC Press: Boca Raton
-
Presumably because of the low solvent polarity, which has a dielectric constant of 2.209 at 25 °C: CRC Handbook of Chemistry and Physics; Weast, R. C., Ed.; CRC Press: Boca Raton, 1983-1984; E-51.
-
(1983)
CRC Handbook of Chemistry and Physics
-
-
-
93
-
-
33749141140
-
-
Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938.
-
(1994)
Angew. Chem., Int. Ed. Engl.
, vol.33
, pp. 938
-
-
Mayr, H.1
Patz, M.2
-
94
-
-
70349463761
-
-
note
-
The authors have deposited the crystallographic data with the Cambridge Crystallographic Data Center (CCDC no. 712587). The data can be obtained, on request, from the Director, Cambridge Crystallographic Data Center, 12 Union Road, Cambridge, CB2 1EZ, U.K.
-
-
-
-
95
-
-
0003549646
-
-
1H NMR coupling constants of the allylic chloride, nitrile, and sulfide were all 15, which falls in the range for a trans-alkene but is only slightly greater than the normal range for cis-alkenes: Wiley: Chichester
-
1H NMR coupling constants of the allylic chloride, nitrile, and sulfide were all 15, which falls in the range for a trans-alkene but is only slightly greater than the normal range for cis-alkenes: Gunther, H. In NMR Spectroscopy. Basic Principles, Concepts, and Applications in Chemistry, 2nd ed.; Wiley: Chichester, 1998; p 45.
-
(1998)
NMR Spectroscopy. Basic Principles, Concepts, and Applications in Chemistry, 2nd Ed.
, pp. 45
-
-
Gunther, H.1
-
96
-
-
0001457336
-
-
Cori, O.; Chayet, L.; Perez, L. M.; Bunton, C. A.; Hachy, D. J. Org. Chem. 1986, 51, 1310.
-
(1986)
J. Org. Chem.
, vol.51
, pp. 1310
-
-
Cori, O.1
Chayet, L.2
Perez, L.M.3
Bunton, C.A.4
Hachy, D.5
-
97
-
-
70349458614
-
-
note
-
5-promoted cyclization, but considerable decomposition occurs, which could potentially cause selective removal of one or more of the allylic chlorides.
-
-
-
-
98
-
-
70349468647
-
-
note
-
5 affords mainly geranyl bromide (86%) accompanied by terpenyl bromide (12%) consistent with a more rapid cyclization of any linaloyl bromide.
-
-
-
-
99
-
-
35348993725
-
-
5, in the absence of base, affords only trace amounts of the chloride : (a)
-
5, in the absence of base, affords only trace amounts of the chloride : (a) Yadav, J. S.; Bhunia, D. C.; Krishna, K. V.; Srihari, P. Tetrahedron Lett. 2007, 48, 8306.
-
(2007)
Tetrahedron Lett.
, vol.48
, pp. 8306
-
-
Yadav, J.S.1
Bhunia, D.C.2
Krishna, K.V.3
Srihari, P.4
-
102
-
-
0008137198
-
-
Malhotra, K. C.; Banerjee, U. K.; Chaudhry, S. C. J. Indian Chem. Soc. 1980, 58, 868.
-
(1980)
J. Indian Chem. Soc.
, vol.58
, pp. 868
-
-
Malhotra, K.C.1
Banerjee, U.K.2
Chaudhry, S.C.3
-
103
-
-
0019191856
-
-
Bernady, K. F.; Poletto, J. F.; Nocera, J.; Mirando, P.; Schaub, R. E.; Weiss, M. J. J. Org. Chem. 1980, 45, 4702.
-
(1980)
J. Org. Chem.
, vol.45
, pp. 4702
-
-
Bernady, K.F.1
Poletto, J.F.2
Nocera, J.3
Mirando, P.4
Schaub, R.E.5
Weiss, M.J.6
-
104
-
-
49049131900
-
-
5 is required to avoid transmetallation to an organoniobium species because these organoniobiums are weak nucleophiles that do not react with ketones
-
5 is required to avoid transmetallation to an organoniobium species because these organoniobiums are weak nucleophiles that do not react with ketones: Kauffmann, T.; Antfang, E.; Ennen, B.; Klas, N. Tetrahedron Lett. 1982, 23, 2301.
-
(1982)
Tetrahedron Lett.
, vol.23
, pp. 2301
-
-
Kauffmann, T.1
Antfang, E.2
Ennen, B.3
Klas, N.4
-
105
-
-
70349463760
-
-
note
-
20
-
-
-
-
106
-
-
70349461826
-
-
note
-
Optimization experiments revealed the necessity of THF in the Grignard addition as the use of dioxane caused incomplete addition.
-
-
-
-
107
-
-
70349455550
-
-
note
-
Close scrutiny of the intermediate chloride revealed the presence of less than 5% of a closely related material that was eventually identified as the corresponding (E)-allylic bromide. The naphthyl bromide could arise by in situ displacement of the chloride by the bromide present from the Grignard reagent or potentially through a mixed Mg-Nb species.
-
-
-
-
108
-
-
0037191026
-
-
4 acts through a direct displacement on the oxygen-bearing carbon
-
4 acts through a direct displacement on the oxygen-bearing carbon: Shi, M.; Wang, C.-J. Tetrahedron 2002, 58, 9063.
-
(2002)
Tetrahedron
, vol.58
, pp. 9063
-
-
Shi, M.1
Wang, C.-J.2
-
109
-
-
70349477309
-
-
note
-
1H NMR analysis of the crude allylic chloride or bromide indicated complete rearrangement to the allylic halide prior to the sulfenylate displacement.
-
-
-
-
111
-
-
70349471894
-
-
note
-
1H NMR analysis being consistent with methyl-ether cleavage.
-
-
-
-
112
-
-
70349474769
-
-
note
-
Performing the addition-rearrangement-sulfenylate displacement with piperonal proceeded in 20% yield with the minor reaction components exhibiting spectral data consistent with acetal cleavage.
-
-
-
-
113
-
-
67849091011
-
-
For recent uses of bromoallenes, see: (a)
-
For recent uses of bromoallenes, see: (a) Zhang, W.; Xu, H.; Xu, H.; Tang, W. J. Am. Chem. Soc. 2009, 131, 3832.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3832
-
-
Zhang, W.1
Xu, H.2
Xu, H.3
Tang, W.4
-
114
-
-
52349108357
-
-
(b) Tang, Y.; Shen, L.; Dellaria, B. J.; Hsung, R. P. Tetrahedron Lett. 2008, 49, 6404.
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 6404
-
-
Tang, Y.1
Shen, L.2
Dellaria, B.J.3
Hsung, R.P.4
-
115
-
-
44449174624
-
-
(c) Xia, Y. Z.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. H. J. Am. Chem. Soc. 2008, 130, 6940.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 6940
-
-
Xia, Y.Z.1
Dudnik, A.S.2
Gevorgyan, V.3
Li, Y.H.4
-
116
-
-
34250666515
-
-
(d) Hamaguchi, H.; Kosaka, S.; Ohno, H.; Fujii, N.; Tanaka, T. Chem.-Eur. J. 2007, 13, 1692.
-
(2007)
Chem.-Eur. J.
, vol.13
, pp. 1692
-
-
Hamaguchi, H.1
Kosaka, S.2
Ohno, H.3
Fujii, N.4
Tanaka, T.5
-
117
-
-
33846676191
-
-
(e) Vaz, B.; Dominguez, M.; Alvarez, R.; de Lera, A. R. Chem.-Eur. J. 2007, 13, 1273.
-
(2007)
Chem.-Eur. J.
, vol.13
, pp. 1273
-
-
Vaz, B.1
Dominguez, M.2
Alvarez, R.3
De Lera, A.R.4
-
119
-
-
22244434207
-
-
(g) Shen, L. C.; Hsung, R. P.; Zhang, Y. S.; Antoline, J. E.; Zhang, X. J. Org. Lett. 2005, 7, 3081.
-
(2005)
J. Org. Lett.
, vol.7
, pp. 3081
-
-
Shen, L.C.1
Hsung, R.P.2
Zhang, Y.S.3
Antoline, J.E.4
Zhang, X.5
-
122
-
-
28044464967
-
-
(j) Xu, B.; Hammond, G. B. Angew. Chem., Int. Ed. 2005, 44, 7404.
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 7404
-
-
Xu, B.1
Hammond, G.B.2
-
123
-
-
16244407181
-
-
(k) Hamaguchi, H.; Kosaka, S.; Ohno, H.; Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 1513.
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 1513
-
-
Hamaguchi, H.1
Kosaka, S.2
Ohno, H.3
Tanaka, T.4
-
125
-
-
0006157327
-
-
Gibson, V. C.; Kee, T. P.; Shaw, A. Polyhedron 1988, 7, 2217.
-
(1988)
Polyhedron
, vol.7
, pp. 2217
-
-
Gibson, V.C.1
Kee, T.P.2
Shaw, A.3
-
126
-
-
70349455549
-
-
note
-
Thin layer chromatography allows convenient monitoring of sluggish reactions. Samples can be directly removed and applied to a TLC plate and are conveniently analyzed because most allylic alcohols are considerably more polar than the corresponding chloride.
-
-
-
|