메뉴 건너뛰기




Volumn 465, Issue 2109, 2009, Pages 2927-2948

Unsupervised training of Bayesian networks for data clustering

Author keywords

Bayesian networks; Classification expectation maximization algorithm; Clustering; Machine learning; Unsupervised training

Indexed keywords

BAYESIAN NETWORKS; BLIND SOURCE SEPARATION; CLASSIFIERS; CLUSTER ANALYSIS; DISTRIBUTED PARAMETER NETWORKS; EDUCATION; IMAGE PROCESSING; INFERENCE ENGINES; INTELLIGENT NETWORKS; LEARNING ALGORITHMS; MAXIMUM LIKELIHOOD ESTIMATION; MAXIMUM PRINCIPLE; OPTIMIZATION; ROBOT LEARNING; SPEECH RECOGNITION;

EID: 70349426182     PISSN: 13645021     EISSN: 14712946     Source Type: Journal    
DOI: 10.1098/rspa.2009.0065     Document Type: Article
Times cited : (33)

References (46)
  • 1
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Search in a space of partially directed acyclic graphs
    • (doi:10.1007/s10994-005-0473-4)
    • Acid, S., de Campos, L. M. & Castellano, J. G. 2005 Learning Bayesian network classifiers: search in a space of partially directed acyclic graphs. Mach. Learn. 59, 213-235. (doi:10.1007/s10994-005-0473-4)
    • (2005) Mach. Learn. , vol.59 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science. See
    • Asuncion, A. & Newman, D. J. 2007 UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. See http://www.ics.ci.edu/~mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 0036100113 scopus 로고    scopus 로고
    • Context-specific Bayesian clustering for gene expression data
    • (doi:10.1089/10665270252935403)
    • Barash, Y. & Friedman, N. 2002 Context-specific Bayesian clustering for gene expression data. J. Comput. Biol. 9, 169-191. (doi:10.1089/ 10665270252935403)
    • (2002) J. Comput. Biol. , vol.9 , pp. 169-191
    • Barash, Y.1    Friedman, N.2
  • 5
    • 0032098774 scopus 로고    scopus 로고
    • Some new indexes of cluster validity
    • (doi: 10.1109/3477.678624)
    • Bezdek, J. C. & Pal, N. R. 1998 Some new indexes of cluster validity. IEEE Trans. Syst. Man. Cybern. B 28, 301-315. (doi: 10.1109/3477.678624)
    • (1998) IEEE Trans. Syst. Man. Cybern. B , vol.28 , pp. 301-315
    • Bezdek, J.C.1    Pal, N.R.2
  • 7
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • (doi:10.1016/S0734-189X(87)80014-2)
    • Carpenter, G. & Grossberg, S. 1987 A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vision Graph. Image Understanding 37, 54-115. (doi:10.1016/S0734-189X(87)80014-2)
    • (1987) Comput. Vision Graph. Image Understanding , vol.37 , pp. 54-115
    • Carpenter, G.1    Grossberg, S.2
  • 8
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • (doi:10.1016/0167-9473(92)90042-E)
    • Celeux, G. & Govaert, G. 1992 A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14, 315-332. (doi:10.1016/0167-9473(92)90042-E)
    • (1992) Comput. Stat. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 9
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • (doi:10.1016/0031-3203(94)00125-6)
    • Celeux, G. & Govaert, G. 1995 Gaussian parsimonious clustering models. Pattern Recognit. 28, 781-793. (doi:10.1016/0031-3203(94)00125-6)
    • (1995) Pattern Recognit. , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 10
    • 21244433569 scopus 로고    scopus 로고
    • TAN classifiers based on decomposable distributions
    • (doi:10.1007/s10994-005-0470-7)
    • Cerquides, J. & Lopez de Mantaras, R. 2005 TAN classifiers based on decomposable distributions. Mach. Learn. 59, 323-354. (doi:10.1007/s10994-005- 0470-7)
    • (2005) Mach. Learn. , vol.59 , pp. 323-354
    • Cerquides, J.1    Lopez De Mantaras, R.2
  • 11
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • (doi:10.1109/TIT.1968.1054142)
    • Chow, C. K. & Liu, C. N. 1968 Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory IT-14, 462-467. (doi:10.1109/TIT.1968.1054142)
    • (1968) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 12
    • 21244495993 scopus 로고    scopus 로고
    • Exact model averaging with naive Bayesian classifiers
    • San Francisco, CA: Morgan Kauffman
    • Dash, D. & Cooper, G. F. 2002 Exact model averaging with naive Bayesian classifiers. In Proc. 19th Int. Conf. Machine Learning. San Francisco, CA: Morgan Kauffman.
    • (2002) Proc. 19th Int. Conf. Machine Learning
    • Dash, D.1    Cooper, G.F.2
  • 13
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. N., Laird, N. M. & Rubin, D. B. 1977 Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. 39, 1-38.
    • (1977) J. R. Statist. Soc. Ser. , vol.39 , pp. 1-38
    • Dempster, A.N.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • San Francisco, CA:Morgan Kaufmann
    • Dougherty, J., Kohavi, R. & Sahami, M. 1995 Supervised and unsupervised discretization of continuous features. In Proc. 12th Int. Conf. Machine Learning. San Francisco, CA:Morgan Kaufmann.
    • (1995) Proc. 12th Int. Conf. Machine Learning
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 16
    • 0042925724 scopus 로고    scopus 로고
    • Genetic input selection to a neural classifier for defect classification of radiata pine boards
    • Estévez, P. A., Perez, C. A. & Goles, E. 2003 Genetic input selection to a neural classifier for defect classification of radiata pine boards. Forest Prod. J. 53, 87-94.
    • (2003) Forest Prod. J. , vol.53 , pp. 87-94
    • Estévez, P.A.1    Perez, C.A.2    Goles, E.3
  • 17
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • San Francisco, CA: Morgan Kaufmann
    • Fayyad, U. M. & Irani, K. B. 1993 Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. 13th Int. Joint Conf. on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann.
    • (1993) Proc. 13th Int. Joint Conf. on Artificial Intelligence
    • Fayyad, U.M.1    Irani, K.B.2
  • 19
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • (doi:10.1023/A:1007465528199)
    • Friedman, N., Geiger, D. & Goldszmidt, M. 1997 Bayesian network classifiers. Mach. Learn. 29, 131-163. (doi:10.1023/A:1007465528199)
    • (1997) Mach. Learn , vol.29 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 20
    • 14344256569 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers by maximizing conditional likelihood
    • New York, NY: ACM
    • Grossman, D. & Domingos, P. 2004 Learning Bayesian network classifiers by maximizing conditional likelihood. In Proc. 21st Int. Conf. on Machine Learning. New York, NY: ACM.
    • (2004) Proc. 21st Int. Conf. on Machine Learning
    • Grossman, D.1    Domingos, P.2
  • 21
    • 33749636162 scopus 로고    scopus 로고
    • Bayesian class-matched multinet classifier
    • (doi:10.1007/11815921)
    • Gurwicz, Y. & Lerner, B. 2006 Bayesian class-matched multinet classifier. Lect. Notes Comput. Sci. 4109, 145-153. (doi:10.1007/11815921)
    • (2006) Lect. Notes Comput. Sci. , vol.4109 , pp. 145-153
    • Gurwicz, Y.1    Lerner, B.2
  • 22
    • 29144477220 scopus 로고    scopus 로고
    • Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
    • (doi:10.1109/TSMCB.2005.850162)
    • Hwang, K. & Zhang, B. 2005 Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets. IEEE Trans. Syst. Man. Cybern. B, Cybern. 35, 1302-1310. (doi:10.1109/TSMCB. 2005.850162)
    • (2005) IEEE Trans. Syst. Man. Cybern. B, Cybern. , vol.35 , pp. 1302-1310
    • Hwang, K.1    Zhang, B.2
  • 23
    • 52949152920 scopus 로고    scopus 로고
    • Boosted Bayesian network classifiers
    • (doi:10.1007/s10994-008-5065-7)
    • Jing, Y., Pavlović, V. & Rehg J. M. 2008 Boosted Bayesian network classifiers. Mach. Learn. 73, 155-184. (doi:10.1007/s10994-008-5065-7)
    • (2008) Mach. Learn , vol.73 , pp. 155-184
    • Jing, Y.1    Pavlović, V.2    Rehg, J.M.3
  • 24
    • 39449097889 scopus 로고    scopus 로고
    • Techniques for clustering gene expression data
    • (doi:10.1016/j.compbiomed.2007.11.001)
    • Kerr, G., Ruskin, H. J., Crane, M. & Doolan, P. 2008 Techniques for clustering gene expression data. Comput. Biol. Med. 38, 283-293. (doi:10.1016/j.compbiomed.2007.11.001)
    • (2008) Comput. Biol. Med. , vol.38 , pp. 283-293
    • Kerr, G.1    Ruskin, H.J.2    Crane, M.3    Doolan, P.4
  • 26
    • 70350674995 scopus 로고
    • On the shortest spanning subtree of a graph and the traveling salesman problem
    • (doi:10.2307/2033241)
    • Kruskal, J. B. 1956 On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48-50. (doi:10.2307/2033241)
    • (1956) Proc. Am. Math. Soc. , vol.7 , pp. 48-50
    • Kruskal, J.B.1
  • 30
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley: University of California Press
    • MacQueen, J. 1967 Some methods for classification and analysis of multivariate observations. In Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability. Berkeley: University of California Press.
    • (1967) Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability
    • MacQueen, J.1
  • 31
    • 24044550075 scopus 로고    scopus 로고
    • Learning with mixtures of trees
    • (doi:10.1162/153244301753344605)
    • Meilǎ, M. & Jordan, M. I. 2000 Learning with mixtures of trees. J. Mach. Learn. Res. 1, 1-48. (doi:10.1162/153244301753344605)
    • (2000) J. Mach. Learn. Res. , vol.1 , pp. 1-48
    • Meilǎ, M.1    Jordan, M.I.2
  • 34
    • 17144463341 scopus 로고    scopus 로고
    • Learning Bayesian networks for clustering by means of constructive induction
    • (doi:10.1016/S0167-8655(99)00089-6)
    • Peña, J. M., Lozano, J. M. & Larrañaga, P. 1999 Learning Bayesian networks for clustering by means of constructive induction. Pattern Recogn. Lett. 20, 1219-1230. (doi:10.1016/S0167-8655(99)00089-6)
    • (1999) Pattern Recogn. Lett. , vol.20 , pp. 1219-1230
    • Peña, J.M.1    Lozano, J.M.2    Larrañaga, P.3
  • 35
    • 0033685826 scopus 로고    scopus 로고
    • An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering
    • (doi:10.1016/S0167-8655(00)00038-6)
    • Peña, J. M., Lozano, J. M. & Larrañaga, P. 2000 An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. Pattern Recogn. Lett. 21, 779-786. (doi:10.1016/S0167-8655(00)00038- 6)
    • (2000) Pattern Recogn. Lett. , vol.21 , pp. 779-786
    • Peña, J.M.1    Lozano, J.M.2    Larrañaga, P.3
  • 36
    • 8444244894 scopus 로고    scopus 로고
    • Unsupervised learning of Bayesian networks via estimation of distribution algorithms: An application to gene expression data clustering
    • Peña, J. M., Lozano, J. M. & Larrañaga, P. 2004 Unsupervised learning of Bayesian networks via estimation of distribution algorithms: an application to gene expression data clustering. 12(Suppl. 1), 63-82.
    • (2004) Int. J. Uncertain. Fuzziness Knowledge Based Syst. , vol.12 , Issue.SUPPL. 1 , pp. 63-82
    • Peña, J.M.1    Lozano, J.M.2    Larrañaga, P.3
  • 37
    • 36949007156 scopus 로고    scopus 로고
    • Clustering techniques and their applications in engineering
    • (doi:10.1243/09544062JMES508)
    • Pham, D. T. & Afify, A. A. 2007 Clustering techniques and their applications in engineering. Proc. IMechE C, J. Mech. Eng. Sci. 221, 1445-1459. (doi:10.1243/09544062JMES508)
    • (2007) Proc. IMechE C, J. Mech. Eng. Sci. , vol.221 , pp. 1445-1459
    • Pham, D.T.1    Afify, A.A.2
  • 39
    • 0033899728 scopus 로고    scopus 로고
    • Maximum certainty data partitioning
    • (doi:10.1016/S0031-3203(99)00086-2)
    • Roberts, S. J., Everson, R. & Rezek I. 2000 Maximum certainty data partitioning. Pattern Recogn. 33, 833-839. (doi:10.1016/S0031-3203(99)00086-2)
    • (2000) Pattern Recogn. , vol.33 , pp. 833-839
    • Roberts, S.J.1    Everson, R.2    Rezek, I.3
  • 40
    • 18144374881 scopus 로고    scopus 로고
    • A neurofuzzy color image segmentation method for wood surface defect detection
    • Ruz, G. A., Estévez, P. A. & Perez, C. A. 2005 A neurofuzzy color image segmentation method for wood surface defect detection. Forest Prod. J. 55, 52-58.
    • (2005) Forest Prod. J. , vol.55 , pp. 52-58
    • Ruz, G.A.1    Estévez, P.A.2    Perez, C.A.3
  • 41
    • 60749112431 scopus 로고    scopus 로고
    • Automated visual inspection system for wood defect classification using computational intelligence techniques
    • (doi:10.1080/00207720802630685)
    • Ruz, G. A., Estévez, P. A. & Ramírez, P. A. 2009 Automated visual inspection system for wood defect classification using computational intelligence techniques. Int. J. Syst. Sci. 40, 163-172. (doi:10.1080/00207720802630685)
    • (2009) Int. J. Syst. Sci. , vol.40 , pp. 163-172
    • Ruz, G.A.1    Estévez, P.A.2    Ramírez, P.A.3
  • 42
    • 33749410653 scopus 로고    scopus 로고
    • Bayesian model averaging of naive Bayes for clustering
    • (doi:10.1109/TSMCB.2006.874132)
    • Santafé G., Lozano, J. A. & Larrañaga, P. 2006a Bayesian model averaging of naive Bayes for clustering. IEEE Trans. Syst. Man. Cybern. B 36, 1149-1161. (doi:10.1109/TSMCB.2006.874132)
    • (2006) IEEE Trans. Syst. Man. Cybern. B , vol.36 , pp. 1149-1161
    • Santafé, G.1    Lozano, J.A.2    Larrañaga, P.3
  • 45
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks-part 2: Clustering
    • (doi:10.1109/TFUZZ.1993.390282)
    • Simpson P. K. 1993 Fuzzy min-max neural networks-part 2: clustering. IEEE Trans. Fuzzy Syst. 1, 32-45. (doi:10.1109/TFUZZ.1993.390282)
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 32-45
    • Simpson, P.K.1
  • 46
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • (doi:10.1016/S0893-6080(97)00133-0)
    • Ueda, N. & Nakano, R. 1998 Deterministic annealing EM algorithm. Neural Netw. 11, 271-282. (doi:10.1016/S0893-6080(97)00133-0)
    • (1998) Neural Netw. , vol.11 , pp. 271-282
    • Ueda, N.1    Nakano, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.