-
1
-
-
21244467165
-
Learning Bayesian network classifiers: Search in a space of partially directed acyclic graphs
-
(doi:10.1007/s10994-005-0473-4)
-
Acid, S., de Campos, L. M. & Castellano, J. G. 2005 Learning Bayesian network classifiers: search in a space of partially directed acyclic graphs. Mach. Learn. 59, 213-235. (doi:10.1007/s10994-005-0473-4)
-
(2005)
Mach. Learn.
, vol.59
, pp. 213-235
-
-
Acid, S.1
De Campos, L.M.2
Castellano, J.G.3
-
2
-
-
36948999941
-
-
Irvine, CA: University of California, School of Information and Computer Science. See
-
Asuncion, A. & Newman, D. J. 2007 UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. See http://www.ics.ci.edu/~mlearn/MLRepository.html.
-
(2007)
UCI Machine Learning Repository
-
-
Asuncion, A.1
Newman, D.J.2
-
3
-
-
0036100113
-
Context-specific Bayesian clustering for gene expression data
-
(doi:10.1089/10665270252935403)
-
Barash, Y. & Friedman, N. 2002 Context-specific Bayesian clustering for gene expression data. J. Comput. Biol. 9, 169-191. (doi:10.1089/ 10665270252935403)
-
(2002)
J. Comput. Biol.
, vol.9
, pp. 169-191
-
-
Barash, Y.1
Friedman, N.2
-
5
-
-
0032098774
-
Some new indexes of cluster validity
-
(doi: 10.1109/3477.678624)
-
Bezdek, J. C. & Pal, N. R. 1998 Some new indexes of cluster validity. IEEE Trans. Syst. Man. Cybern. B 28, 301-315. (doi: 10.1109/3477.678624)
-
(1998)
IEEE Trans. Syst. Man. Cybern. B
, vol.28
, pp. 301-315
-
-
Bezdek, J.C.1
Pal, N.R.2
-
6
-
-
84880873970
-
Unsupervised discretization using kernel density estimation.
-
Hyderabad, India
-
Biba, M., Esposito, F., Ferilli, S., Di Mauro, N., Basile, T. M. A. 2007 Unsupervised discretization using kernel density estimation. In Proc. Int. Joint Conf. on ArtificialIntelligence (IJCAI2007), Hyderabad, India.
-
(2007)
Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI2007)
-
-
Biba, M.1
Esposito, F.2
Ferilli, S.3
Di Mauro, N.4
Basile, T.M.A.5
-
7
-
-
0021776661
-
A massively parallel architecture for a self-organizing neural pattern recognition machine
-
(doi:10.1016/S0734-189X(87)80014-2)
-
Carpenter, G. & Grossberg, S. 1987 A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vision Graph. Image Understanding 37, 54-115. (doi:10.1016/S0734-189X(87)80014-2)
-
(1987)
Comput. Vision Graph. Image Understanding
, vol.37
, pp. 54-115
-
-
Carpenter, G.1
Grossberg, S.2
-
8
-
-
0001626339
-
A classification EM algorithm for clustering and two stochastic versions
-
(doi:10.1016/0167-9473(92)90042-E)
-
Celeux, G. & Govaert, G. 1992 A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14, 315-332. (doi:10.1016/0167-9473(92)90042-E)
-
(1992)
Comput. Stat. Data Anal.
, vol.14
, pp. 315-332
-
-
Celeux, G.1
Govaert, G.2
-
9
-
-
0029305528
-
Gaussian parsimonious clustering models
-
(doi:10.1016/0031-3203(94)00125-6)
-
Celeux, G. & Govaert, G. 1995 Gaussian parsimonious clustering models. Pattern Recognit. 28, 781-793. (doi:10.1016/0031-3203(94)00125-6)
-
(1995)
Pattern Recognit.
, vol.28
, pp. 781-793
-
-
Celeux, G.1
Govaert, G.2
-
10
-
-
21244433569
-
TAN classifiers based on decomposable distributions
-
(doi:10.1007/s10994-005-0470-7)
-
Cerquides, J. & Lopez de Mantaras, R. 2005 TAN classifiers based on decomposable distributions. Mach. Learn. 59, 323-354. (doi:10.1007/s10994-005- 0470-7)
-
(2005)
Mach. Learn.
, vol.59
, pp. 323-354
-
-
Cerquides, J.1
Lopez De Mantaras, R.2
-
11
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
(doi:10.1109/TIT.1968.1054142)
-
Chow, C. K. & Liu, C. N. 1968 Approximating discrete probability distributions with dependence trees. IEEE Trans. Inform. Theory IT-14, 462-467. (doi:10.1109/TIT.1968.1054142)
-
(1968)
IEEE Trans. Inform. Theory
, vol.IT-14
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
12
-
-
21244495993
-
Exact model averaging with naive Bayesian classifiers
-
San Francisco, CA: Morgan Kauffman
-
Dash, D. & Cooper, G. F. 2002 Exact model averaging with naive Bayesian classifiers. In Proc. 19th Int. Conf. Machine Learning. San Francisco, CA: Morgan Kauffman.
-
(2002)
Proc. 19th Int. Conf. Machine Learning
-
-
Dash, D.1
Cooper, G.F.2
-
13
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. N., Laird, N. M. & Rubin, D. B. 1977 Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. 39, 1-38.
-
(1977)
J. R. Statist. Soc. Ser.
, vol.39
, pp. 1-38
-
-
Dempster, A.N.1
Laird, N.M.2
Rubin, D.B.3
-
14
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
San Francisco, CA:Morgan Kaufmann
-
Dougherty, J., Kohavi, R. & Sahami, M. 1995 Supervised and unsupervised discretization of continuous features. In Proc. 12th Int. Conf. Machine Learning. San Francisco, CA:Morgan Kaufmann.
-
(1995)
Proc. 12th Int. Conf. Machine Learning
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
16
-
-
0042925724
-
Genetic input selection to a neural classifier for defect classification of radiata pine boards
-
Estévez, P. A., Perez, C. A. & Goles, E. 2003 Genetic input selection to a neural classifier for defect classification of radiata pine boards. Forest Prod. J. 53, 87-94.
-
(2003)
Forest Prod. J.
, vol.53
, pp. 87-94
-
-
Estévez, P.A.1
Perez, C.A.2
Goles, E.3
-
17
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
San Francisco, CA: Morgan Kaufmann
-
Fayyad, U. M. & Irani, K. B. 1993 Multi-interval discretization of continuous-valued attributes for classification learning. In Proc. 13th Int. Joint Conf. on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann.
-
(1993)
Proc. 13th Int. Joint Conf. on Artificial Intelligence
-
-
Fayyad, U.M.1
Irani, K.B.2
-
19
-
-
0031276011
-
Bayesian network classifiers
-
(doi:10.1023/A:1007465528199)
-
Friedman, N., Geiger, D. & Goldszmidt, M. 1997 Bayesian network classifiers. Mach. Learn. 29, 131-163. (doi:10.1023/A:1007465528199)
-
(1997)
Mach. Learn
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
20
-
-
14344256569
-
Learning Bayesian network classifiers by maximizing conditional likelihood
-
New York, NY: ACM
-
Grossman, D. & Domingos, P. 2004 Learning Bayesian network classifiers by maximizing conditional likelihood. In Proc. 21st Int. Conf. on Machine Learning. New York, NY: ACM.
-
(2004)
Proc. 21st Int. Conf. on Machine Learning
-
-
Grossman, D.1
Domingos, P.2
-
21
-
-
33749636162
-
Bayesian class-matched multinet classifier
-
(doi:10.1007/11815921)
-
Gurwicz, Y. & Lerner, B. 2006 Bayesian class-matched multinet classifier. Lect. Notes Comput. Sci. 4109, 145-153. (doi:10.1007/11815921)
-
(2006)
Lect. Notes Comput. Sci.
, vol.4109
, pp. 145-153
-
-
Gurwicz, Y.1
Lerner, B.2
-
22
-
-
29144477220
-
Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
-
(doi:10.1109/TSMCB.2005.850162)
-
Hwang, K. & Zhang, B. 2005 Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets. IEEE Trans. Syst. Man. Cybern. B, Cybern. 35, 1302-1310. (doi:10.1109/TSMCB. 2005.850162)
-
(2005)
IEEE Trans. Syst. Man. Cybern. B, Cybern.
, vol.35
, pp. 1302-1310
-
-
Hwang, K.1
Zhang, B.2
-
23
-
-
52949152920
-
Boosted Bayesian network classifiers
-
(doi:10.1007/s10994-008-5065-7)
-
Jing, Y., Pavlović, V. & Rehg J. M. 2008 Boosted Bayesian network classifiers. Mach. Learn. 73, 155-184. (doi:10.1007/s10994-008-5065-7)
-
(2008)
Mach. Learn
, vol.73
, pp. 155-184
-
-
Jing, Y.1
Pavlović, V.2
Rehg, J.M.3
-
24
-
-
39449097889
-
Techniques for clustering gene expression data
-
(doi:10.1016/j.compbiomed.2007.11.001)
-
Kerr, G., Ruskin, H. J., Crane, M. & Doolan, P. 2008 Techniques for clustering gene expression data. Comput. Biol. Med. 38, 283-293. (doi:10.1016/j.compbiomed.2007.11.001)
-
(2008)
Comput. Biol. Med.
, vol.38
, pp. 283-293
-
-
Kerr, G.1
Ruskin, H.J.2
Crane, M.3
Doolan, P.4
-
26
-
-
70350674995
-
On the shortest spanning subtree of a graph and the traveling salesman problem
-
(doi:10.2307/2033241)
-
Kruskal, J. B. 1956 On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48-50. (doi:10.2307/2033241)
-
(1956)
Proc. Am. Math. Soc.
, vol.7
, pp. 48-50
-
-
Kruskal, J.B.1
-
28
-
-
67650385024
-
Generalized additive Bayesian network classifiers
-
Hyderabad, India
-
Li, J., Zhang, C., Wang, T. & Zhang Y. 2007 Generalized additive Bayesian network classifiers. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), Hyderabad, India.
-
(2007)
Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI 2007)
-
-
Li, J.1
Zhang, C.2
Wang, T.3
Zhang, Y.4
-
30
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
Berkeley: University of California Press
-
MacQueen, J. 1967 Some methods for classification and analysis of multivariate observations. In Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability. Berkeley: University of California Press.
-
(1967)
Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability
-
-
MacQueen, J.1
-
31
-
-
24044550075
-
Learning with mixtures of trees
-
(doi:10.1162/153244301753344605)
-
Meilǎ, M. & Jordan, M. I. 2000 Learning with mixtures of trees. J. Mach. Learn. Res. 1, 1-48. (doi:10.1162/153244301753344605)
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 1-48
-
-
Meilǎ, M.1
Jordan, M.I.2
-
34
-
-
17144463341
-
Learning Bayesian networks for clustering by means of constructive induction
-
(doi:10.1016/S0167-8655(99)00089-6)
-
Peña, J. M., Lozano, J. M. & Larrañaga, P. 1999 Learning Bayesian networks for clustering by means of constructive induction. Pattern Recogn. Lett. 20, 1219-1230. (doi:10.1016/S0167-8655(99)00089-6)
-
(1999)
Pattern Recogn. Lett.
, vol.20
, pp. 1219-1230
-
-
Peña, J.M.1
Lozano, J.M.2
Larrañaga, P.3
-
35
-
-
0033685826
-
An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering
-
(doi:10.1016/S0167-8655(00)00038-6)
-
Peña, J. M., Lozano, J. M. & Larrañaga, P. 2000 An improved Bayesian structural EM algorithm for learning Bayesian networks for clustering. Pattern Recogn. Lett. 21, 779-786. (doi:10.1016/S0167-8655(00)00038- 6)
-
(2000)
Pattern Recogn. Lett.
, vol.21
, pp. 779-786
-
-
Peña, J.M.1
Lozano, J.M.2
Larrañaga, P.3
-
36
-
-
8444244894
-
Unsupervised learning of Bayesian networks via estimation of distribution algorithms: An application to gene expression data clustering
-
Peña, J. M., Lozano, J. M. & Larrañaga, P. 2004 Unsupervised learning of Bayesian networks via estimation of distribution algorithms: an application to gene expression data clustering. 12(Suppl. 1), 63-82.
-
(2004)
Int. J. Uncertain. Fuzziness Knowledge Based Syst.
, vol.12
, Issue.SUPPL. 1
, pp. 63-82
-
-
Peña, J.M.1
Lozano, J.M.2
Larrañaga, P.3
-
37
-
-
36949007156
-
Clustering techniques and their applications in engineering
-
(doi:10.1243/09544062JMES508)
-
Pham, D. T. & Afify, A. A. 2007 Clustering techniques and their applications in engineering. Proc. IMechE C, J. Mech. Eng. Sci. 221, 1445-1459. (doi:10.1243/09544062JMES508)
-
(2007)
Proc. IMechE C, J. Mech. Eng. Sci.
, vol.221
, pp. 1445-1459
-
-
Pham, D.T.1
Afify, A.A.2
-
39
-
-
0033899728
-
Maximum certainty data partitioning
-
(doi:10.1016/S0031-3203(99)00086-2)
-
Roberts, S. J., Everson, R. & Rezek I. 2000 Maximum certainty data partitioning. Pattern Recogn. 33, 833-839. (doi:10.1016/S0031-3203(99)00086-2)
-
(2000)
Pattern Recogn.
, vol.33
, pp. 833-839
-
-
Roberts, S.J.1
Everson, R.2
Rezek, I.3
-
40
-
-
18144374881
-
A neurofuzzy color image segmentation method for wood surface defect detection
-
Ruz, G. A., Estévez, P. A. & Perez, C. A. 2005 A neurofuzzy color image segmentation method for wood surface defect detection. Forest Prod. J. 55, 52-58.
-
(2005)
Forest Prod. J.
, vol.55
, pp. 52-58
-
-
Ruz, G.A.1
Estévez, P.A.2
Perez, C.A.3
-
41
-
-
60749112431
-
Automated visual inspection system for wood defect classification using computational intelligence techniques
-
(doi:10.1080/00207720802630685)
-
Ruz, G. A., Estévez, P. A. & Ramírez, P. A. 2009 Automated visual inspection system for wood defect classification using computational intelligence techniques. Int. J. Syst. Sci. 40, 163-172. (doi:10.1080/00207720802630685)
-
(2009)
Int. J. Syst. Sci.
, vol.40
, pp. 163-172
-
-
Ruz, G.A.1
Estévez, P.A.2
Ramírez, P.A.3
-
42
-
-
33749410653
-
Bayesian model averaging of naive Bayes for clustering
-
(doi:10.1109/TSMCB.2006.874132)
-
Santafé G., Lozano, J. A. & Larrañaga, P. 2006a Bayesian model averaging of naive Bayes for clustering. IEEE Trans. Syst. Man. Cybern. B 36, 1149-1161. (doi:10.1109/TSMCB.2006.874132)
-
(2006)
IEEE Trans. Syst. Man. Cybern. B
, vol.36
, pp. 1149-1161
-
-
Santafé, G.1
Lozano, J.A.2
Larrañaga, P.3
-
45
-
-
0027542561
-
Fuzzy min-max neural networks-part 2: Clustering
-
(doi:10.1109/TFUZZ.1993.390282)
-
Simpson P. K. 1993 Fuzzy min-max neural networks-part 2: clustering. IEEE Trans. Fuzzy Syst. 1, 32-45. (doi:10.1109/TFUZZ.1993.390282)
-
(1993)
IEEE Trans. Fuzzy Syst.
, vol.1
, pp. 32-45
-
-
Simpson, P.K.1
-
46
-
-
0032029288
-
Deterministic annealing EM algorithm
-
(doi:10.1016/S0893-6080(97)00133-0)
-
Ueda, N. & Nakano, R. 1998 Deterministic annealing EM algorithm. Neural Netw. 11, 271-282. (doi:10.1016/S0893-6080(97)00133-0)
-
(1998)
Neural Netw.
, vol.11
, pp. 271-282
-
-
Ueda, N.1
Nakano, R.2
|