메뉴 건너뛰기




Volumn 221, Issue 11, 2007, Pages 1445-1459

Clustering techniques and their applications in engineering

Author keywords

Clustering; Data mining; Engineering applications

Indexed keywords

DATA MINING; DATA PROCESSING; DATABASE SYSTEMS;

EID: 36949007156     PISSN: 09544062     EISSN: None     Source Type: Journal    
DOI: 10.1243/09544062JMES508     Document Type: Review
Times cited : (54)

References (132)
  • 3
    • 0036722310 scopus 로고    scopus 로고
    • Integration of self-organizing feature map and k-means algorithm for market segmentation
    • Kuo, R. J., Ho, L. M., and Hu, C. M. Integration of self-organizing feature map and k-means algorithm for market segmentation. Comput. Oper. Res., 2002, 29, 1475-1493.
    • (2002) Comput. Oper. Res , vol.29 , pp. 1475-1493
    • Kuo, R.J.1    Ho, L.M.2    Hu, C.M.3
  • 4
    • 22944482840 scopus 로고    scopus 로고
    • Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Trans
    • Au, W.-H., Chan, K. C. C., Wong, A. K. C., and Wang, Y. Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf., 2005, 2(2), 83-101.
    • (2005) Comput. Biol. Bioinf , vol.2 , Issue.2 , pp. 83-101
    • Au, W.-H.1    Chan, K.C.C.2    Wong, A.K.C.3    Wang, Y.4
  • 5
    • 14644431755 scopus 로고    scopus 로고
    • Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering
    • Kersten, P. R., Lee, J.-S., and Ainsworth, T. L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens., 2005, 43(3), 519-527.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 519-527
    • Kersten, P.R.1    Lee, J.-S.2    Ainsworth, T.L.3
  • 10
    • 0031270377 scopus 로고    scopus 로고
    • A comparative study of clustering methods
    • Zaït, M. and Messatfa, H. A comparative study of clustering methods. Future Gener. Comput. Syst., 1997, 13, 149-159.
    • (1997) Future Gener. Comput. Syst , vol.13 , pp. 149-159
    • Zaït, M.1    Messatfa, H.2
  • 11
    • 0034826101 scopus 로고    scopus 로고
    • An experimental comparison of model-based clustering methods
    • Meilã, M. and Heckerman, D. An experimental comparison of model-based clustering methods. Mach. Learn., 2001, 42, 9-29.
    • (2001) Mach. Learn , vol.42 , pp. 9-29
    • Meilã, M.1    Heckerman, D.2
  • 12
    • 0038119396 scopus 로고    scopus 로고
    • Techniques of cluster algorithms in data mining
    • Grabmeier, J. and Rudolph, A. Techniques of cluster algorithms in data mining. Data Min. Knowl. Discov., 2002, 6, 303-360.
    • (2002) Data Min. Knowl. Discov , vol.6 , pp. 303-360
    • Grabmeier, J.1    Rudolph, A.2
  • 13
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-a survey
    • Liao, T. W. Clustering of time series data-a survey. Pattern Recognit., 2005, 38, 1857-1874.
    • (2005) Pattern Recognit , vol.38 , pp. 1857-1874
    • Liao, T.W.1
  • 14
    • 33644982700 scopus 로고    scopus 로고
    • A unified view on clustering binary data
    • Li, T. A unified view on clustering binary data. Mach. Learn., 2006, 62, 199-215.
    • (2006) Mach. Learn , vol.62 , pp. 199-215
    • Li, T.1
  • 16
    • 36949007037 scopus 로고    scopus 로고
    • MacQueen, J. B. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, I, Statistics, Berkeley, California, 1967, pp. 281-297 (University of California Press, Los Angeles, California, USA).
    • MacQueen, J. B. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. I, Statistics, Berkeley, California, 1967, pp. 281-297 (University of California Press, Los Angeles, California, USA).
  • 19
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A. P., Laird, N., and Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Stat. Soc. B, 1977, 39, 1-38.
    • (1977) J. Roy. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.2    Rubin, D.B.3
  • 20
    • 13644262858 scopus 로고    scopus 로고
    • Accelerating EM clustering to find high-quality solutions
    • Ordonez, C. and Omiecinski, E. Accelerating EM clustering to find high-quality solutions. Knowl. Inf. Syst., 2005, 7, 135-157.
    • (2005) Knowl. Inf. Syst , vol.7 , pp. 135-157
    • Ordonez, C.1    Omiecinski, E.2
  • 21
    • 0003770145 scopus 로고
    • ISODATA, a novel method of data analysis and classification
    • Technical report, AD699616, SRI, Stanford, California, USA
    • Ball, G. and Hall, D. ISODATA, a novel method of data analysis and classification. Technical report, AD699616, SRI, Stanford, California, USA, 1965.
    • (1965)
    • Ball, G.1    Hall, D.2
  • 23
    • 38049103082 scopus 로고
    • A near-optimal seed value selection in k-means algorithm using a genetic algorithm
    • Babu, G. P. and Murty, M. N. A near-optimal seed value selection in k-means algorithm using a genetic algorithm. Pattern Recognit. Lett., 1993, 14(10), 763-169.
    • (1993) Pattern Recognit. Lett , vol.14 , Issue.10 , pp. 763-169
    • Babu, G.P.1    Murty, M.N.2
  • 25
    • 19644383468 scopus 로고    scopus 로고
    • Generalized k-harmonic means - dynamic weighting of data in unsupervised learning
    • Chicago, Illinois, USA, 5-7 April, available from
    • Zhang, B. Generalized k-harmonic means - dynamic weighting of data in unsupervised learning. In Proceedings of the 1st SLAM International Conference on Data mining (SDM-01), Chicago, Illinois, USA, 5-7 April 2001, available from http://www.siam.org/meetings/sdm01/ pdf/sdm01_06.pdf
    • (2001) Proceedings of the 1st SLAM International Conference on Data mining (SDM-01)
    • Zhang, B.1
  • 26
    • 0041328214 scopus 로고    scopus 로고
    • k*-means: A new generalized k-means clustering algorithm
    • Cheung, Y.-M. k*-means: a new generalized k-means clustering algorithm. Pattern Recognit. Lett., 2003, 24, 2883-2893.
    • (2003) Pattern Recognit. Lett , vol.24 , pp. 2883-2893
    • Cheung, Y.-M.1
  • 27
    • 28844467995 scopus 로고    scopus 로고
    • Application of ant k-means on clustering analysis
    • Kuo, R. J., Wang, H. S., Hu, T.-L., and Chou, S. H. Application of ant k-means on clustering analysis. Comput. Math. Appl., 2005, 50, 1709-1724.
    • (2005) Comput. Math. Appl , vol.50 , pp. 1709-1724
    • Kuo, R.J.1    Wang, H.S.2    Hu, T.-L.3    Chou, S.H.4
  • 28
    • 36949039266 scopus 로고    scopus 로고
    • Al-Daoud, M. B., Venkateswarlu, N. B., and Roberts, S. A. Fast k-means clustering algorithms. Technical report, 95.18, School of Computer Studies, University of Leeds, UK, 1995.
    • Al-Daoud, M. B., Venkateswarlu, N. B., and Roberts, S. A. Fast k-means clustering algorithms. Technical report, 95.18, School of Computer Studies, University of Leeds, UK, 1995.
  • 29
    • 85153959666 scopus 로고
    • Convergence properties of the k-means algorithm
    • Bottou, L. and Benglo, Y. Convergence properties of the k-means algorithm. Adv. Neural Inf. Process. Syst., 1995, 7, 585-592.
    • (1995) Adv. Neural Inf. Process. Syst , vol.7 , pp. 585-592
    • Bottou, L.1    Benglo, Y.2
  • 30
    • 0031069945 scopus 로고    scopus 로고
    • The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks
    • Fritzke, B. The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks. Neural Process. Lett., 1997, 5(1), 35-45.
    • (1997) Neural Process. Lett , vol.5 , Issue.1 , pp. 35-45
    • Fritzke, B.1
  • 35
    • 0034815902 scopus 로고    scopus 로고
    • The enhanced LBG algorithm
    • Patane, G. and Russo, M. The enhanced LBG algorithm. Neural Netiv., 2001, 14, 1219-1237.
    • (2001) Neural Netiv , vol.14 , pp. 1219-1237
    • Patane, G.1    Russo, M.2
  • 38
  • 39
    • 3242783231 scopus 로고    scopus 로고
    • Cluster-ability detection and initial seed selection in large data sets
    • Technical report 99-6, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York, USA
    • Epter, S., Krishnamoorthy, M., and Zaki, M. Cluster-ability detection and initial seed selection in large data sets. Technical report 99-6, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York, USA, 1999.
    • (1999)
    • Epter, S.1    Krishnamoorthy, M.2    Zaki, M.3
  • 42
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov., 1998, 2(3), 283-304.
    • (1998) Data Min. Knowl. Discov , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 47
    • 21444455416 scopus 로고    scopus 로고
    • Improvement and parallelism of k-means clustering algorithm
    • Jinlan, T., Lin, Z., Suqin, Z., and Lu, L. Improvement and parallelism of k-means clustering algorithm. Tsinghua Sci. Technol., 2005, 10(3), 277-281.
    • (2005) Tsinghua Sci. Technol , vol.10 , Issue.3 , pp. 277-281
    • Jinlan, T.1    Lin, Z.2    Suqin, Z.3    Lu, L.4
  • 49
  • 51
    • 0003707174 scopus 로고    scopus 로고
    • Scaling EM (expectation maximisation) clustering to large databases
    • MSR-TR-98-35, Redmond, Washington, USA
    • Bradley, P., Fayyad, U., and Reina, C. Scaling EM (expectation maximisation) clustering to large databases. Microsoft Research Technical Report, MSR-TR-98-35, Redmond, Washington, USA, 1998.
    • (1998) Microsoft Research Technical Report
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 53
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: A new data clustering algorithm and its applications
    • Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: a new data clustering algorithm and its applications. Int. J. Data Min. Knowl. Discov., 1997, 1(2), 141-182.
    • (1997) Int. J. Data Min. Knowl. Discov , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 63
    • 11244353294 scopus 로고    scopus 로고
    • A methodology for dynamic data mining based on fuzzy clustering
    • Crespo, F. and Weber, R. A methodology for dynamic data mining based on fuzzy clustering. Fuzzy Sets Syst., 2005, 150, 267-284.
    • (2005) Fuzzy Sets Syst , vol.150 , pp. 267-284
    • Crespo, F.1    Weber, R.2
  • 64
    • 26844532803 scopus 로고    scopus 로고
    • A possibilistic fuzzy c-means clustering algorithm
    • Pal, N. R., Pal, K., Keller, J. M., and Bezdek, J. C. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst., 2005, 13(4), 517-530.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.4 , pp. 517-530
    • Pal, N.R.1    Pal, K.2    Keller, J.M.3    Bezdek, J.C.4
  • 65
    • 24344484344 scopus 로고    scopus 로고
    • General c-means clustering model
    • Yu, L. General c-means clustering model. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1197-1211.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.8 , pp. 1197-1211
    • Yu, L.1
  • 66
    • 32844460668 scopus 로고    scopus 로고
    • Data clustering with partial supervision
    • Bouchachia, A. and Pedrycz, W. Data clustering with partial supervision. Data Min. Knowl. Discov., 2006, 12, 47-78.
    • (2006) Data Min. Knowl. Discov , vol.12 , pp. 47-78
    • Bouchachia, A.1    Pedrycz, W.2
  • 67
    • 0000414908 scopus 로고
    • Applications of neural networks in manufacturing: A state-of-the-art survey
    • Zhang, H.-C. and Haung, S. H. Applications of neural networks in manufacturing: a state-of-the-art survey. Int. J. Prod. Res., 1995, 33(3), 705-728.
    • (1995) Int. J. Prod. Res , vol.33 , Issue.3 , pp. 705-728
    • Zhang, H.-C.1    Haung, S.H.2
  • 69
    • 0141569723 scopus 로고    scopus 로고
    • AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing
    • Monostori, L. AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Eng. Appl. Artif. Intell., 2003, 16(3), 227-291.
    • (2003) Eng. Appl. Artif. Intell , vol.16 , Issue.3 , pp. 227-291
    • Monostori, L.1
  • 70
    • 0003410791 scopus 로고    scopus 로고
    • 3rd edition, Springer-Verlag, Berlin, Germany
    • Kohonen, T. Self-organizing maps, 3rd edition, 2001 (Springer-Verlag, Berlin, Germany).
    • (2001) Self-organizing maps
    • Kohonen, T.1
  • 72
    • 0026408256 scopus 로고
    • Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system
    • Carpenter, G. A., Grossberg, S., and Rosen, D. B. Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw., 1991, 4, 759-771.
    • (1991) Neural Netw , vol.4 , pp. 759-771
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.B.3
  • 75
    • 58149212260 scopus 로고
    • A variable-length genetic algorithm for clustering and classification
    • Srikanth, R., George, R., and Warsi, N. A variable-length genetic algorithm for clustering and classification. Pattern Recognit. Lett., 1995, 16(8), 789-800.
    • (1995) Pattern Recognit. Lett , vol.16 , Issue.8 , pp. 789-800
    • Srikanth, R.1    George, R.2    Warsi, N.3
  • 76
    • 0030189865 scopus 로고    scopus 로고
    • In search of optimal clusters using genetic algorithms
    • Murthy, C. A. and Chowdhury, N. In search of optimal clusters using genetic algorithms. Pattern Recognit. Lett., 1996, 17(8), 825-832.
    • (1996) Pattern Recognit. Lett , vol.17 , Issue.8 , pp. 825-832
    • Murthy, C.A.1    Chowdhury, N.2
  • 77
    • 0031368243 scopus 로고    scopus 로고
    • Genetic algorithms for large scale clustering problems
    • Fränti, P., Kivijärvi, J., Kaukoranta, T., and Nevalainen, O. Genetic algorithms for large scale clustering problems. Computer, 1997, 40(9), 547-554.
    • (1997) Computer , vol.40 , Issue.9 , pp. 547-554
    • Fränti, P.1    Kivijärvi, J.2    Kaukoranta, T.3    Nevalainen, O.4
  • 78
    • 0032660692 scopus 로고    scopus 로고
    • Clustering with a genetically optimized approach
    • Hall, L. O., Ozyurt, I. B., and Bezdek, J. C. Clustering with a genetically optimized approach. IEEE Trans. Evol. Comput., 1999, 3(2), 103-112.
    • (1999) IEEE Trans. Evol. Comput , vol.3 , Issue.2 , pp. 103-112
    • Hall, L.O.1    Ozyurt, I.B.2    Bezdek, J.C.3
  • 79
    • 0034819176 scopus 로고    scopus 로고
    • A genetic approach to the automatic clustering problem
    • Tseng, L. Y. and Yang, S. B. A genetic approach to the automatic clustering problem. Pattern Recognit., 2001, 34(2), 415-424.
    • (2001) Pattern Recognit , vol.34 , Issue.2 , pp. 415-424
    • Tseng, L.Y.1    Yang, S.B.2
  • 81
    • 0346216900 scopus 로고    scopus 로고
    • A novel genetic algorithm for automatic clustering
    • Garai, G. and Chaudhuri, B. B. A novel genetic algorithm for automatic clustering. Pattern Recognit. Lett., 2004, 25(2), 173-187.
    • (2004) Pattern Recognit. Lett , vol.25 , Issue.2 , pp. 173-187
    • Garai, G.1    Chaudhuri, B.B.2
  • 82
    • 33744745603 scopus 로고    scopus 로고
    • An evolutionary clustering algorithm for gene expression microarray data analysis
    • Ma, P. C. H., Chan, K. C. C., Yao, X., and Chiu, D. K. Y. An evolutionary clustering algorithm for gene expression microarray data analysis. IEEE Trans. Evol. Comput., 2006, 10(3), 296-314.
    • (2006) IEEE Trans. Evol. Comput , vol.10 , Issue.3 , pp. 296-314
    • Ma, P.C.H.1    Chan, K.C.C.2    Yao, X.3    Chiu, D.K.Y.4
  • 83
    • 0032182826 scopus 로고    scopus 로고
    • Computational intelligence methods for process discovery
    • Cass, R. and DePietro, J. Computational intelligence methods for process discovery. Eng. Appl. Artif. Intell., 1998, 11, 675-681.
    • (1998) Eng. Appl. Artif. Intell , vol.11 , pp. 675-681
    • Cass, R.1    DePietro, J.2
  • 84
  • 85
    • 0031188173 scopus 로고    scopus 로고
    • A deployed engineering design retrieval system using neural networks
    • Smith, S. D. G., Escobedo, R., Anderson, M., and Caudell, T. P. A deployed engineering design retrieval system using neural networks. IEEE Trans. Neural Netw., 1997, 8(4), 847-851.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.4 , pp. 847-851
    • Smith, S.D.G.1    Escobedo, R.2    Anderson, M.3    Caudell, T.P.4
  • 86
    • 0035371343 scopus 로고    scopus 로고
    • Generalized part family formation through fuzzy self-organizing feature map neural network
    • Kuo, R. J., Chi, S. C., and Teng, P. W. Generalized part family formation through fuzzy self-organizing feature map neural network. Comput. Ind. Eng., 2001, 40, 79-100.
    • (2001) Comput. Ind. Eng , vol.40 , pp. 79-100
    • Kuo, R.J.1    Chi, S.C.2    Teng, P.W.3
  • 87
    • 18844418226 scopus 로고    scopus 로고
    • Tsai, C.-Y. and Chang, C. A. A two-stage fuzzy approach to feature-based design retrieval. Comput. Ind., 2005, 56(5), 493-505.
    • Tsai, C.-Y. and Chang, C. A. A two-stage fuzzy approach to feature-based design retrieval. Comput. Ind., 2005, 56(5), 493-505.
  • 88
    • 0028195193 scopus 로고
    • Integration of a feature-based CAD system and an ART-1 neural model for GT coding and part family coding
    • Liao, T. W. and Lee, K. S. Integration of a feature-based CAD system and an ART-1 neural model for GT coding and part family coding. Comput. Ind. Eng., 1994, 26(1), 93-104.
    • (1994) Comput. Ind. Eng , vol.26 , Issue.1 , pp. 93-104
    • Liao, T.W.1    Lee, K.S.2
  • 89
    • 0000327693 scopus 로고
    • Component grouping for GT applications-a fuzzy clustering approach with validity measure
    • Gindy, N. N. Z., Ratchev, T. M., and Case, K. Component grouping for GT applications-a fuzzy clustering approach with validity measure. Int. J. Prod. Res., 1995, 33(9), 2493-2509.
    • (1995) Int. J. Prod. Res , vol.33 , Issue.9 , pp. 2493-2509
    • Gindy, N.N.Z.1    Ratchev, T.M.2    Case, K.3
  • 90
    • 0031245452 scopus 로고    scopus 로고
    • Using ART1 neural networks with destructive solid geometry for design retrieving systems
    • Chang, C. A. and Tsai, C.-Y. Using ART1 neural networks with destructive solid geometry for design retrieving systems. Comput. Ind., 1997, 34(1), 27-41.
    • (1997) Comput. Ind , vol.34 , Issue.1 , pp. 27-41
    • Chang, C.A.1    Tsai, C.-Y.2
  • 91
    • 0032675155 scopus 로고    scopus 로고
    • Grouping parts based on geometrical shapes and manufacturing attributes using a neural network
    • Lee, S. Y. and Fischer, G. W. Grouping parts based on geometrical shapes and manufacturing attributes using a neural network. J. Intell. Manuf., 1999, 10, 199-209.
    • (1999) J. Intell. Manuf , vol.10 , pp. 199-209
    • Lee, S.Y.1    Fischer, G.W.2
  • 92
    • 0038341744 scopus 로고    scopus 로고
    • Fuzzy neural networks for intelligent design retrieval using associative manufacturing features
    • Tsai, C.-Y. and Chang, C. A. Fuzzy neural networks for intelligent design retrieval using associative manufacturing features. J. Intell. Manuf., 2003, 14, 183-195.
    • (2003) J. Intell. Manuf , vol.14 , pp. 183-195
    • Tsai, C.-Y.1    Chang, C.A.2
  • 93
    • 18844376906 scopus 로고    scopus 로고
    • Application of ART neural network to development of technology for functional feature-based reference design
    • Wang, C.-B., Chen, Y.-J., Chen, Y.-M., and Chu, H.-C. Application of ART neural network to development of technology for functional feature-based reference design. Comput. Ind., 2005, 56(5), 428-441.
    • (2005) Comput. Ind , vol.56 , Issue.5 , pp. 428-441
    • Wang, C.-B.1    Chen, Y.-J.2    Chen, Y.-M.3    Chu, H.-C.4
  • 94
    • 33644696247 scopus 로고    scopus 로고
    • Data mining in an engineering design environment: Or applications from graph matching
    • Romanowski, C. J., Nagi, R., and Sudit, M. Data mining in an engineering design environment: or applications from graph matching. Comput. Oper. Res., 2006, 33, 3150-3160.
    • (2006) Comput. Oper. Res , vol.33 , pp. 3150-3160
    • Romanowski, C.J.1    Nagi, R.2    Sudit, M.3
  • 95
    • 0029638546 scopus 로고
    • Dynamic grouping of parts in flexible manufacturing system - a self-organizing neural network approach
    • Kulkarni, U. R. and Kiang, M. Y. Dynamic grouping of parts in flexible manufacturing system - a self-organizing neural network approach. Eur. J. Oper. Res., 1995, 84, 192-212.
    • (1995) Eur. J. Oper. Res , vol.84 , pp. 192-212
    • Kulkarni, U.R.1    Kiang, M.Y.2
  • 96
    • 0000317717 scopus 로고
    • Machine-part family formation with the adaptive resonance theory paradigm
    • Dagli, C. and Huggahalli, R. Machine-part family formation with the adaptive resonance theory paradigm. Int. J. Prod. Res., 1995, 33(4), 893-913.
    • (1995) Int. J. Prod. Res , vol.33 , Issue.4 , pp. 893-913
    • Dagli, C.1    Huggahalli, R.2
  • 97
    • 0036448566 scopus 로고    scopus 로고
    • Al-Ahmari, A. M. A. A fuzzy analysis approach for part-machine grouping in cellular manufacturing systems. Integr. Manuf. Syst., 2002, 13(7), 489-497.
    • Al-Ahmari, A. M. A. A fuzzy analysis approach for part-machine grouping in cellular manufacturing systems. Integr. Manuf. Syst., 2002, 13(7), 489-497.
  • 98
    • 0027664644 scopus 로고
    • An improved neural network leader algorithm for part-machine grouping in group technology
    • Kaparthi, S., Suresh, N. C., and Cerveny, R. P. An improved neural network leader algorithm for part-machine grouping in group technology. Eur. J. Oper. Res., 1993, 69, 342-356.
    • (1993) Eur. J. Oper. Res , vol.69 , pp. 342-356
    • Kaparthi, S.1    Suresh, N.C.2    Cerveny, R.P.3
  • 99
  • 100
    • 84952529136 scopus 로고
    • A variable-parameter unsupervised learning clustering neural network approach with application to machine-part group formation
    • Malakooti, B. and Yang, Z. A variable-parameter unsupervised learning clustering neural network approach with application to machine-part group formation. Int. J. Prod. Res., 1995, 33(9), 2395-2413.
    • (1995) Int. J. Prod. Res , vol.33 , Issue.9 , pp. 2395-2413
    • Malakooti, B.1    Yang, Z.2
  • 101
    • 0001703798 scopus 로고
    • A neural network-based cell formation algorithm in cellular manufacturing
    • Chen, S.-J. and Cheng, C.-S. A neural network-based cell formation algorithm in cellular manufacturing. Int. J. Prod. Res., 1995, 33(2), 293-318.
    • (1995) Int. J. Prod. Res , vol.33 , Issue.2 , pp. 293-318
    • Chen, S.-J.1    Cheng, C.-S.2
  • 102
    • 0030126949 scopus 로고    scopus 로고
    • FACT: A new neural network-based clustering algorithm for group technology
    • Kamal, S. and Burke, L. I. FACT: a new neural network-based clustering algorithm for group technology. Int. J. Prod. Res., 1996, 34(4), 919-946.
    • (1996) Int. J. Prod. Res , vol.34 , Issue.4 , pp. 919-946
    • Kamal, S.1    Burke, L.I.2
  • 103
    • 0031117602 scopus 로고    scopus 로고
    • Application of fuzzy clustering in cellular manufacturing
    • Maznata, A. and Settineri, L. Application of fuzzy clustering in cellular manufacturing. Int. J. Prod. Res., 1997, 35(4), 1077-1094.
    • (1997) Int. J. Prod. Res , vol.35 , Issue.4 , pp. 1077-1094
    • Maznata, A.1    Settineri, L.2
  • 104
    • 0032629654 scopus 로고    scopus 로고
    • New fuzzy c-means and assignment techniques-based cell formation algorithm to perform part-type clusters and machine-type clusters separately
    • Susanto, S., Kennedy, R., and Price, J. New fuzzy c-means and assignment techniques-based cell formation algorithm to perform part-type clusters and machine-type clusters separately. Prod. Plan. Control, 1999, 10(4), 375-388.
    • (1999) Prod. Plan. Control , vol.10 , Issue.4 , pp. 375-388
    • Susanto, S.1    Kennedy, R.2    Price, J.3
  • 105
    • 0034668365 scopus 로고    scopus 로고
    • Integrated use of fuzzy c- means and fuzzy KNN for GT part family and machine cell formation
    • Josien, K. and Liao, T. W. Integrated use of fuzzy c- means and fuzzy KNN for GT part family and machine cell formation. Int. J. Prod. Res., 2000, 38(15), 3513-3536.
    • (2000) Int. J. Prod. Res , vol.38 , Issue.15 , pp. 3513-3536
    • Josien, K.1    Liao, T.W.2
  • 106
    • 0037116773 scopus 로고    scopus 로고
    • Simultaneous grouping of parts and machines with an integrated fuzzy clustering method
    • Josien, K. and Liao, T. W. Simultaneous grouping of parts and machines with an integrated fuzzy clustering method. Fuzzy Sets Syst., 2002, 126, 1-21.
    • (2002) Fuzzy Sets Syst , vol.126 , pp. 1-21
    • Josien, K.1    Liao, T.W.2
  • 107
    • 0037116779 scopus 로고    scopus 로고
    • Modified fuzzy c-means algorithm for cellular manufacturing
    • Lozano, S., Dobado, D., Larrañeta, J., and Onleva, L. Modified fuzzy c-means algorithm for cellular manufacturing. Fuzzy Sets Syst., 2002, 126, 23-32.
    • (2002) Fuzzy Sets Syst , vol.126 , pp. 23-32
    • Lozano, S.1    Dobado, D.2    Larrañeta, J.3    Onleva, L.4
  • 108
    • 0037061427 scopus 로고    scopus 로고
    • Cell formation with reduction in setup times
    • Ohta, H. and Nakamura, M. Cell formation with reduction in setup times. Comput. Ind. Eng., 2002, 42, 317-327.
    • (2002) Comput. Ind. Eng , vol.42 , pp. 317-327
    • Ohta, H.1    Nakamura, M.2
  • 109
    • 5144228750 scopus 로고    scopus 로고
    • Evolving knowledge for the solution of clustering problems in cellular manufacturing
    • Dimopoulos, C. and Mort, N. Evolving knowledge for the solution of clustering problems in cellular manufacturing. Int. J. Prod. Res., 2004, 42(19), 4119-4133.
    • (2004) Int. J. Prod. Res , vol.42 , Issue.19 , pp. 4119-4133
    • Dimopoulos, C.1    Mort, N.2
  • 110
    • 14644440747 scopus 로고    scopus 로고
    • GT cells design and implementation in a glass mould production system
    • Durmusoglu, M. B. and Nomak, A. GT cells design and implementation in a glass mould production system. Comput. Ind. Eng., 2005, 48, 525-536.
    • (2005) Comput. Ind. Eng , vol.48 , pp. 525-536
    • Durmusoglu, M.B.1    Nomak, A.2
  • 111
    • 0032669540 scopus 로고    scopus 로고
    • Sequence-dependent clustering of parts and machines: A fuzzy ART neural network approach
    • Suresh, N. C., Slomp, J., and Kaparthi, S. Sequence-dependent clustering of parts and machines: a fuzzy ART neural network approach. Int. J. Prod. Res., 1999, 37(14), 2793-2816.
    • (1999) Int. J. Prod. Res , vol.37 , Issue.14 , pp. 2793-2816
    • Suresh, N.C.1    Slomp, J.2    Kaparthi, S.3
  • 112
    • 0028374159 scopus 로고
    • Design of line-type cellular manufacturing systems for minimum operating and material-handling costs
    • Liao, T. W. Design of line-type cellular manufacturing systems for minimum operating and material-handling costs. Int. J. Prod. Res., 1994, 32(2), 387-397.
    • (1994) Int. J. Prod. Res , vol.32 , Issue.2 , pp. 387-397
    • Liao, T.W.1
  • 113
    • 0029518558 scopus 로고
    • Self-organizing map network as an interactive clustering tool - an application to group technology
    • Kiang, M. Y., Kulkarni, U. R., and Tam, K. Y. Self-organizing map network as an interactive clustering tool - an application to group technology. Decis. Support Syst., 1995, 15, 351-374.
    • (1995) Decis. Support Syst , vol.15 , pp. 351-374
    • Kiang, M.Y.1    Kulkarni, U.R.2    Tam, K.Y.3
  • 114
    • 0031651387 scopus 로고    scopus 로고
    • CASE: A clustering algorithm for cell formation with sequence data
    • Nair, G. J. and Narendran, T. T. CASE: a clustering algorithm for cell formation with sequence data. Int. J. Prod. Res., 1998, 36(1), 157-179.
    • (1998) Int. J. Prod. Res , vol.36 , Issue.1 , pp. 157-179
    • Nair, G.J.1    Narendran, T.T.2
  • 115
    • 0242301647 scopus 로고    scopus 로고
    • Performance of fuzzy ART neural network and hierarchical clustering of part-machine grouping based on operation sequences
    • Park, S. and Suresh, N. C. Performance of fuzzy ART neural network and hierarchical clustering of part-machine grouping based on operation sequences. Int. J. Prod. Res., 2003, 41(14), 3185-3216.
    • (2003) Int. J. Prod. Res , vol.41 , Issue.14 , pp. 3185-3216
    • Park, S.1    Suresh, N.C.2
  • 116
    • 0031167594 scopus 로고    scopus 로고
    • Feature recognition using ART-2: A self-organizing neural network
    • Lankalapalli, K., Chatterjee, S., and Chang, T. C. Feature recognition using ART-2: a self-organizing neural network. J. Intell. Manuf., 1997, 8, 203-214.
    • (1997) J. Intell. Manuf , vol.8 , pp. 203-214
    • Lankalapalli, K.1    Chatterjee, S.2    Chang, T.C.3
  • 117
    • 0031245685 scopus 로고    scopus 로고
    • Coding and clustering of design and manufacturing features for concurrent design
    • Xue, D. and Dong, Z. Coding and clustering of design and manufacturing features for concurrent design. Comput. Ind., 1997, 34, 139-153.
    • (1997) Comput. Ind , vol.34 , pp. 139-153
    • Xue, D.1    Dong, Z.2
  • 118
    • 0033078887 scopus 로고    scopus 로고
    • Decomposition of interacting features using a Kohonon self-organizing feature map neural network
    • Zulkifli, A. H. and Meeran, S. Decomposition of interacting features using a Kohonon self-organizing feature map neural network. Eng. Appl. Artif. Intell., 1999, 12, 59-78.
    • (1999) Eng. Appl. Artif. Intell , vol.12 , pp. 59-78
    • Zulkifli, A.H.1    Meeran, S.2
  • 119
    • 0242364651 scopus 로고    scopus 로고
    • A hybrid method for recognizing interacting machining features
    • Li, W. S., Ong, S. K., and Nee, A. Y. C. A hybrid method for recognizing interacting machining features. Int. J. Prod. Res., 2003, 41(9), 1887-1908.
    • (2003) Int. J. Prod. Res , vol.41 , Issue.9 , pp. 1887-1908
    • Li, W.S.1    Ong, S.K.2    Nee, A.Y.C.3
  • 120
    • 0032173121 scopus 로고    scopus 로고
    • Tool wear monitoring with wavelet packet transform - fuzzy clustering method
    • Xiaoli, L. and Zhejun, Y. Tool wear monitoring with wavelet packet transform - fuzzy clustering method. Wear, 1998, 219, 145-154.
    • (1998) Wear , vol.219 , pp. 145-154
    • Xiaoli, L.1    Zhejun, Y.2
  • 121
    • 0032629652 scopus 로고    scopus 로고
    • A neural network clustering model for miscellaneous components production planning
    • Cesarotti, V., Rossi, L., and Santoro, R. A neural network clustering model for miscellaneous components production planning. Prod. Plan. Control, 1999, 10(4), 305-316.
    • (1999) Prod. Plan. Control , vol.10 , Issue.4 , pp. 305-316
    • Cesarotti, V.1    Rossi, L.2    Santoro, R.3
  • 122
    • 0035493957 scopus 로고    scopus 로고
    • Knowledge discovery from process operational data using PAC and fuzzy clustering
    • Sebzalli, Y. M. and Wang, X. Z. Knowledge discovery from process operational data using PAC and fuzzy clustering. Eng. Appl. Artif. Intell., 2001, 14, 607-616.
    • (2001) Eng. Appl. Artif. Intell , vol.14 , pp. 607-616
    • Sebzalli, Y.M.1    Wang, X.Z.2
  • 124
    • 0036979446 scopus 로고    scopus 로고
    • Kundu, B., White, K. P., Jr, and Mastrangelo, C. Defect clustering and classification for semiconductor devices. In Proceedings of the 45th Midwest Symposium on Circuits and Systems, 2002, 2, pp. II-561-II-564.
    • Kundu, B., White, K. P., Jr, and Mastrangelo, C. Defect clustering and classification for semiconductor devices. In Proceedings of the 45th Midwest Symposium on Circuits and Systems, 2002, vol. 2, pp. II-561-II-564.
  • 125
    • 0036625547 scopus 로고    scopus 로고
    • Classification of turbulent flow patterns with fuzzy clustering
    • Vernet, A. and Kopp, G. A. Classification of turbulent flow patterns with fuzzy clustering. Eng. Appl. Artif. Intell., 2002, 15, 315-326.
    • (2002) Eng. Appl. Artif. Intell , vol.15 , pp. 315-326
    • Vernet, A.1    Kopp, G.A.2
  • 126
    • 26244457762 scopus 로고    scopus 로고
    • Casalino, G. and Minutolo, F. M. C. A model for evaluation of laser welding efficiency and quality using an artificial neural network and fuzzy logic. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture, 2004, 218, 641-646.
    • Casalino, G. and Minutolo, F. M. C. A model for evaluation of laser welding efficiency and quality using an artificial neural network and fuzzy logic. Proc. Instn Mech. Engrs, Part B: J. Engineering Manufacture, 2004, 218, 641-646.
  • 127
    • 0031186526 scopus 로고    scopus 로고
    • An unsupervised learning neural algorithm for identifying process behaviour on control charts and a comparison with supervised learning approaches
    • Al-Ghanim, A. An unsupervised learning neural algorithm for identifying process behaviour on control charts and a comparison with supervised learning approaches. Comput. Ind. Eng., 1997, 32, 627-639.
    • (1997) Comput. Ind. Eng , vol.32 , pp. 627-639
    • Al-Ghanim, A.1
  • 128
    • 1242264850 scopus 로고    scopus 로고
    • Manufacturing quality control by means of a Fuzzy ART network trained on natural process data
    • Pacella, M., Semeraro, Q., and Anglani, A. Manufacturing quality control by means of a Fuzzy ART network trained on natural process data. Eng. Appl. Artif. Intell., 2004, 17(1), 83-96.
    • (2004) Eng. Appl. Artif. Intell , vol.17 , Issue.1 , pp. 83-96
    • Pacella, M.1    Semeraro, Q.2    Anglani, A.3
  • 129
    • 8644263044 scopus 로고    scopus 로고
    • Adaptive resonance theory-based neural algorithms for manufacturing process quality control
    • Pacella, M., Semeraro, Q., and Anglani, A. Adaptive resonance theory-based neural algorithms for manufacturing process quality control. Int. J. Prod. Res., 2004, 42(21), 4581-4607.
    • (2004) Int. J. Prod. Res , vol.42 , Issue.21 , pp. 4581-4607
    • Pacella, M.1    Semeraro, Q.2    Anglani, A.3
  • 130
    • 20144384127 scopus 로고    scopus 로고
    • Understanding ART-based neural algorithms as statistical tools for manufacturing process quality control
    • Pacella, M. and Semeraro, Q. Understanding ART-based neural algorithms as statistical tools for manufacturing process quality control. Eng. Appl. Artif. Intell., 2005, 18(6), 645-662.
    • (2005) Eng. Appl. Artif. Intell , vol.18 , Issue.6 , pp. 645-662
    • Pacella, M.1    Semeraro, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.