메뉴 건너뛰기




Volumn 39, Issue 10, 2009, Pages 907-914

Improving the protein fold recognition accuracy of a reduced state-space hidden Markov model

Author keywords

Fold recognition; Hidden Markov models; Protein classification; Secondary structure alphabet; Secondary structure prediction

Indexed keywords

EFFICIENT ARCHITECTURE; FOLD RECOGNITION; LOW COMPLEXITY; MODEL ARCHITECTURE; PHARMACEUTICAL INDUSTRY; PROTEIN CLASSIFICATION; PROTEIN DATA BANK; PROTEIN FOLD RECOGNITION; PROTEIN FUNCTIONS; REDUCED-STATE; SECONDARY STRUCTURE ALPHABET; SECONDARY STRUCTURE PREDICTION; SECONDARY STRUCTURES; TEST SETS; TRAINING ALGORITHMS;

EID: 68849088735     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2009.07.007     Document Type: Article
Times cited : (18)

References (26)
  • 2
    • 0028961335 scopus 로고
    • SCOP: a structural classification of proteins database for the investigation of sequences and structures
    • Murzin A.G., Brenner S.E., Hubbard T., and Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247 (1995) 536-540
    • (1995) J. Mol. Biol. , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 3
    • 30344459116 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction (CASP)-round 6
    • Moult J., Fidelis K., Rost B., Hubbard T., and Tramontano A. Critical assessment of methods of protein structure prediction (CASP)-round 6. Proteins 61 Suppl. 7 (2005) 3-7
    • (2005) Proteins , vol.61 , Issue.SUPPL. 7 , pp. 3-7
    • Moult, J.1    Fidelis, K.2    Rost, B.3    Hubbard, T.4    Tramontano, A.5
  • 4
    • 12844288890 scopus 로고    scopus 로고
    • The protein structure prediction problem could be solved using the current PDB library
    • Zhang Y., and Skolnick J. The protein structure prediction problem could be solved using the current PDB library. Proc. Natl. Acad. Sci. USA 102 4 (2005) 1029-1034
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.4 , pp. 1029-1034
    • Zhang, Y.1    Skolnick, J.2
  • 5
    • 0033168498 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted secondary structures for fold recognition
    • Hargbo J., and Elofsson A. Hidden Markov models that use predicted secondary structures for fold recognition. Proteins 36 (1999) 68-87
    • (1999) Proteins , vol.36 , pp. 68-87
    • Hargbo, J.1    Elofsson, A.2
  • 6
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov models for sequence analysis: extension and analysis of the basic method
    • Hughey R., and Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. CABIOS 12 2 (1996) 95-107
    • (1996) CABIOS , vol.12 , Issue.2 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 8
    • 25644439091 scopus 로고    scopus 로고
    • Calibrating E-values for hidden Markov models using reverse-sequence null models
    • Karplus K., Karchin R., Shackelford G., and Hughey R. Calibrating E-values for hidden Markov models using reverse-sequence null models. Bioinformatics 21 (2005) 4107-4115
    • (2005) Bioinformatics , vol.21 , pp. 4107-4115
    • Karplus, K.1    Karchin, R.2    Shackelford, G.3    Hughey, R.4
  • 9
    • 0034695414 scopus 로고    scopus 로고
    • Identification of related proteins on family, superfamily and fold level
    • Lindahl E., and Elofsson A. Identification of related proteins on family, superfamily and fold level. J. Mol. Biol. 295 (2000) 613-625
    • (2000) J. Mol. Biol. , vol.295 , pp. 613-625
    • Lindahl, E.1    Elofsson, A.2
  • 10
    • 0038278386 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry
    • Karchin R., Cline M., Mandel-Gutfreund Y., and Karplus K. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51 (2003) 504-514
    • (2003) Proteins , vol.51 , pp. 504-514
    • Karchin, R.1    Cline, M.2    Mandel-Gutfreund, Y.3    Karplus, K.4
  • 11
    • 34447289828 scopus 로고    scopus 로고
    • Sequence-based protein structure prediction using a reduced state-space hidden Markov model
    • Lampros C., Papaloukas C., Exarchos T.P., Goletsis Y., and Fotiadis D.I. Sequence-based protein structure prediction using a reduced state-space hidden Markov model. Comput. Biol. Med. 37 (2007) 1211-1224
    • (2007) Comput. Biol. Med. , vol.37 , pp. 1211-1224
    • Lampros, C.1    Papaloukas, C.2    Exarchos, T.P.3    Goletsis, Y.4    Fotiadis, D.I.5
  • 12
    • 0029980527 scopus 로고    scopus 로고
    • Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions
    • Dandekar T., and Argos P. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions. J. Mol. Biol. 256 (1996) 645-660
    • (1996) J. Mol. Biol. , vol.256 , pp. 645-660
    • Dandekar, T.1    Argos, P.2
  • 13
    • 34447648188 scopus 로고    scopus 로고
    • SVM-fold: a tool for discriminative multi-class protein fold and superfamily recognition
    • Melvin I., Kuanq R., Weston J., Stafford W.N., and Leslie C. SVM-fold: a tool for discriminative multi-class protein fold and superfamily recognition. BMC Bioinformatics 8 4 (2007) S2
    • (2007) BMC Bioinformatics , vol.8 , Issue.4
    • Melvin, I.1    Kuanq, R.2    Weston, J.3    Stafford, W.N.4    Leslie, C.5
  • 14
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding C., and Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17 (2001) 349-358
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 15
    • 33646568498 scopus 로고    scopus 로고
    • Protein fold recognition with support vector machines fusion network
    • Shi J.Y., Pan Q., and Zhang S.W. Protein fold recognition with support vector machines fusion network. Prog. Biochem. Biophys. 33 2 (2006) 155-162
    • (2006) Prog. Biochem. Biophys. , vol.33 , Issue.2 , pp. 155-162
    • Shi, J.Y.1    Pan, Q.2    Zhang, S.W.3
  • 16
    • 33645964629 scopus 로고    scopus 로고
    • Protein fold recognition using segmentation conditional random fields (SCRFs)
    • Liu Y., Carbonell J., and Weigele P. Protein fold recognition using segmentation conditional random fields (SCRFs). J. Comput. Biol. 13 2 (2006) 394-406
    • (2006) J. Comput. Biol. , vol.13 , Issue.2 , pp. 394-406
    • Liu, Y.1    Carbonell, J.2    Weigele, P.3
  • 17
    • 0025830469 scopus 로고
    • A method to identify protein sequence that fold into a known three-dimensional structure
    • Bowie J.U., Luthy R., and Eisenberg D. A method to identify protein sequence that fold into a known three-dimensional structure. Science 253 (1991) 164-170
    • (1991) Science , vol.253 , pp. 164-170
    • Bowie, J.U.1    Luthy, R.2    Eisenberg, D.3
  • 18
    • 0031297326 scopus 로고    scopus 로고
    • Proteins folds from pair interactions: a blind test into fold recognition
    • Flockner H., Domingues F., and Sippl. M.J. Proteins folds from pair interactions: a blind test into fold recognition. Proteins Struct. Funct. Genet. 1 (1997) 129-133
    • (1997) Proteins Struct. Funct. Genet. , vol.1 , pp. 129-133
    • Flockner, H.1    Domingues, F.2    Sippl., M.J.3
  • 19
    • 22944458570 scopus 로고    scopus 로고
    • Fold recognition by predicted alignment accuracy
    • Xu J. Fold recognition by predicted alignment accuracy. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2 2 (2005) 157-165
    • (2005) IEEE/ACM Trans. Comput. Biol. Bioinformatics , vol.2 , Issue.2 , pp. 157-165
    • Xu, J.1
  • 20
    • 33144460796 scopus 로고    scopus 로고
    • Local protein structure prediction using discriminative models
    • Sander O., Sommer I., and Lengauer T. Local protein structure prediction using discriminative models. BMC Bioinformatics 7 14 (2006)
    • (2006) BMC Bioinformatics , vol.7 , Issue.14
    • Sander, O.1    Sommer, I.2    Lengauer, T.3
  • 21
    • 0032605908 scopus 로고    scopus 로고
    • Structure classification based assessment of CASP3 predictions for the fold recognition targets
    • Murzin A.G. Structure classification based assessment of CASP3 predictions for the fold recognition targets. Proteins Struct. Funct. Genet. 37 (1999) 88-103
    • (1999) Proteins Struct. Funct. Genet. , vol.37 , pp. 88-103
    • Murzin, A.G.1
  • 22
    • 0032828469 scopus 로고    scopus 로고
    • Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction
    • Orengo C.A., Bray J.E., Hubbard T., LoConte L., and Sillitoe I. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins Struct. Funct. Genet. 37 (1999) 149-170
    • (1999) Proteins Struct. Funct. Genet. , vol.37 , pp. 149-170
    • Orengo, C.A.1    Bray, J.E.2    Hubbard, T.3    LoConte, L.4    Sillitoe, I.5
  • 24
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position specific scoring matrices
    • Jones D.T. Protein secondary structure prediction based on position specific scoring matrices. J. Mol. Biol. 292 (1999) 195-202
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.