메뉴 건너뛰기




Volumn 37, Issue 9, 2007, Pages 1211-1224

Sequence-based protein structure prediction using a reduced state-space hidden Markov model

Author keywords

Fold recognition; Hidden Markov models; Protein classification; Structure prediction

Indexed keywords

ANNOTATION; FOLD RECOGNITION; PROTEIN CLASSIFICATION; STRUCTURE PREDICTION;

EID: 34447289828     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2006.10.014     Document Type: Article
Times cited : (23)

References (24)
  • 1
    • 0029980527 scopus 로고    scopus 로고
    • Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions
    • Dandekar T., and Argos P. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions. J. Mol. Biol. 256 (1996) 645-660
    • (1996) J. Mol. Biol. , vol.256 , pp. 645-660
    • Dandekar, T.1    Argos, P.2
  • 2
    • 0029889988 scopus 로고    scopus 로고
    • PHD: predicting one-dimensional protein structure by profile-based neural networks
    • Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266 (1996) 525-539
    • (1996) Methods Enzymol. , vol.266 , pp. 525-539
    • Rost, B.1
  • 3
    • 3142771861 scopus 로고    scopus 로고
    • DPANN: improved sequence to structure alignments following fold recognition
    • Reinhardt A., and Eisenberg D. DPANN: improved sequence to structure alignments following fold recognition. Proteins 56 (2004) 528-538
    • (2004) Proteins , vol.56 , pp. 528-538
    • Reinhardt, A.1    Eisenberg, D.2
  • 4
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding C., and Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17 (2001) 349-358
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 5
    • 0036166451 scopus 로고    scopus 로고
    • Classifying G-protein coupled receptors with support vector machines
    • Karchin R., Karplus K., and Haussler D. Classifying G-protein coupled receptors with support vector machines. Bioinformatics 18 (2002) 147-159
    • (2002) Bioinformatics , vol.18 , pp. 147-159
    • Karchin, R.1    Karplus, K.2    Haussler, D.3
  • 6
    • 20744433230 scopus 로고    scopus 로고
    • Fold recognition by combining profile-profile alignment and support vector machine
    • Han S., Lee B.C., Yu S.T., Jeong C.S., Lee S., and Kim D. Fold recognition by combining profile-profile alignment and support vector machine. Bioinformatics 21 (2005) 2667-2673
    • (2005) Bioinformatics , vol.21 , pp. 2667-2673
    • Han, S.1    Lee, B.C.2    Yu, S.T.3    Jeong, C.S.4    Lee, S.5    Kim, D.6
  • 7
    • 33745086645 scopus 로고    scopus 로고
    • Z. Isik, B. Yanikoglu, U. Sezerman, Protein structural class determination using support vector machines. In: Aykanat C, Dayar T, Korpeoglu I (Eds.), Lecture Notes in Computer Science, vol. 3280, Computer and Information Sciences, Springer, New York, 2004, pp. 82-89.
  • 8
    • 0034141493 scopus 로고    scopus 로고
    • How good is the prediction of protein structural class by the component-coupled method?
    • Wang Z.X., and Yuan Z. How good is the prediction of protein structural class by the component-coupled method?. Proteins 38 (2000) 165-175
    • (2000) Proteins , vol.38 , pp. 165-175
    • Wang, Z.X.1    Yuan, Z.2
  • 9
    • 0036051172 scopus 로고    scopus 로고
    • Prediction of protein structural class by amino acid and polypeptide composition
    • Luo R.Y., Feng Z.P., and Liu J.K. Prediction of protein structural class by amino acid and polypeptide composition. Eur. J. Biochem. 269 (2002) 4219-4225
    • (2002) Eur. J. Biochem. , vol.269 , pp. 4219-4225
    • Luo, R.Y.1    Feng, Z.P.2    Liu, J.K.3
  • 10
    • 0034695414 scopus 로고    scopus 로고
    • Identification of related proteins on family, superfamily and fold level
    • Lindahl E., and Elofsson A. Identification of related proteins on family, superfamily and fold level. J. Mol. Biol. 295 (2000) 613-625
    • (2000) J. Mol. Biol. , vol.295 , pp. 613-625
    • Lindahl, E.1    Elofsson, A.2
  • 11
    • 0029887381 scopus 로고    scopus 로고
    • Hidden Markov models for sequence analysis: extension and analysis of the basic method
    • Hughey R., and Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. CABIOS 12 2 (1996) 95-107
    • (1996) CABIOS , vol.12 , Issue.2 , pp. 95-107
    • Hughey, R.1    Krogh, A.2
  • 12
    • 0033168498 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted secondary structures for fold recognition
    • Hargbo J., and Elofsson A. Hidden Markov models that use predicted secondary structures for fold recognition. Proteins 36 (1999) 68-76
    • (1999) Proteins , vol.36 , pp. 68-76
    • Hargbo, J.1    Elofsson, A.2
  • 13
    • 0038278386 scopus 로고    scopus 로고
    • Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry
    • Karchin R., Cline M., Mandel-Gutfreund Y., and Karplus K. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51 (2003) 504-514
    • (2003) Proteins , vol.51 , pp. 504-514
    • Karchin, R.1    Cline, M.2    Mandel-Gutfreund, Y.3    Karplus, K.4
  • 15
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W., and Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22 (1983) 2577-2637
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 16
    • 0001862769 scopus 로고
    • An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
    • Baum L.E. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3 (1972) 1-8
    • (1972) Inequalities , vol.3 , pp. 1-8
    • Baum, L.E.1
  • 18
    • 0028961335 scopus 로고
    • SCOP: a structural classification of proteins database for the investigation of sequences and structures
    • Murzin A.G., Brenner S.E., Hubbard T., and Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247 (1995) 536-540
    • (1995) J. Mol. Biol. , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 19
    • 34447263060 scopus 로고    scopus 로고
    • S. Payne, Classification of Protein Sequences into Homogenous Families. Master Thesis in Software Engineering, University of Frankfurt, Germany, 2001.
  • 20
    • 0031588960 scopus 로고    scopus 로고
    • Protein topology recognition from secondary structure sequences: applications of the Hidden Markov Models to the alpha class proteins
    • Di Francesco V., Garnier J., and Munson P.J. Protein topology recognition from secondary structure sequences: applications of the Hidden Markov Models to the alpha class proteins. J. Mol. Biol. 267 (1997) 446-463
    • (1997) J. Mol. Biol. , vol.267 , pp. 446-463
    • Di Francesco, V.1    Garnier, J.2    Munson, P.J.3
  • 21
    • 22944458570 scopus 로고    scopus 로고
    • Fold recognition by predicted alignment accuracy
    • Xu J. Fold recognition by predicted alignment accuracy. IEEE/ACM Trans. on Comput. Biol. Bioinform. 2 2 (2005) 157-165
    • (2005) IEEE/ACM Trans. on Comput. Biol. Bioinform. , vol.2 , Issue.2 , pp. 157-165
    • Xu, J.1
  • 23
    • 34447250083 scopus 로고    scopus 로고
    • T. Fawcett, ROC Graphs: Notes and Practical Considerations for Researchers, Technical Report HPL-2003-4, HP Labs (2003).
  • 24
    • 0036300562 scopus 로고    scopus 로고
    • A Bayesian network model for protein fold and remote homologue recognition
    • Raval A., Ghahramani Z., and Wild D.L. A Bayesian network model for protein fold and remote homologue recognition. Bioinformatics 18 (2002) 788-801
    • (2002) Bioinformatics , vol.18 , pp. 788-801
    • Raval, A.1    Ghahramani, Z.2    Wild, D.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.