메뉴 건너뛰기




Volumn 79, Issue 4, 2009, Pages 444-473

Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration

Author keywords

Energy conserving; Multibody dynamics; Rigid bodies; Solids; Time integration; Variational integrators

Indexed keywords

ENERGY CONSERVING; MULTIBODY DYNAMICS; RIGID BODIES; TIME INTEGRATION; VARIATIONAL INTEGRATORS;

EID: 68549120763     PISSN: 00295981     EISSN: 10970207     Source Type: Journal    
DOI: 10.1002/nme.2586     Document Type: Article
Times cited : (93)

References (29)
  • 3
    • 0031210701 scopus 로고    scopus 로고
    • Mechanical integrators derived from a discrete variational principle
    • Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Physica D 1997; 106:223-246.
    • (1997) Physica D , vol.106 , pp. 223-246
    • Wendlandt, J.M.1    Marsden, J.E.2
  • 4
    • 0033300390 scopus 로고    scopus 로고
    • Hoberman's sphere, Euler parameters and Lagrange's equations
    • O'Reilly OM, Varadi PC. Hoberman's sphere, Euler parameters and Lagrange's equations. Journal of Elasticity 1999; 56:171-180.
    • (1999) Journal of Elasticity , vol.56 , pp. 171-180
    • O'Reilly, O.M.1    Varadi, P.C.2
  • 9
    • 33751561246 scopus 로고
    • Hamiltonian formalism for Euler parameters
    • Maciejewski AJ. Hamiltonian formalism for Euler parameters. Celestial Mechanics 1985; 37:47-57.
    • (1985) Celestial Mechanics , vol.37 , pp. 47-57
    • Maciejewski, A.J.1
  • 10
    • 0027677115 scopus 로고
    • Hamiltonian and Lagrangian formulations of rigid-body rotational dynamics based on the Euler parameters
    • Morton Jr HS. Hamiltonian and Lagrangian formulations of rigid-body rotational dynamics based on the Euler parameters. The Journal of the Astronautical Sciences 1993; 41:569-591.
    • (1993) The Journal of the Astronautical Sciences , vol.41 , pp. 569-591
    • Morton Jr., H.S.1
  • 12
    • 33748042004 scopus 로고    scopus 로고
    • The embedded projection method: A general index reduction procedure for constrained system dynamics
    • Borri M, Trainelli L, Croce A. The embedded projection method: a general index reduction procedure for constrained system dynamics. Computer Methods in Applied Mechanics and Engineering 2006; 195(50-51): 6974-6992.
    • (2006) Computer Methods in Applied Mechanics and Engineering , vol.195 , Issue.50-51 , pp. 6974-6992
    • Borri, M.1    Trainelli, L.2    Croce, A.3
  • 13
    • 0030217555 scopus 로고    scopus 로고
    • On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry
    • Gonzalez O, Simo JC. On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering 1996; 134:197-222.
    • (1996) Computer Methods in Applied Mechanics and Engineering , vol.134 , pp. 197-222
    • Gonzalez, O.1    Simo, J.C.2
  • 14
    • 0025889111 scopus 로고
    • Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum
    • Simo JC, Wong KK. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering 1991; 31:19-52.
    • (1991) International Journal for Numerical Methods in Engineering , vol.31 , pp. 19-52
    • Simo, J.C.1    Wong, K.K.2
  • 15
    • 1542305421 scopus 로고    scopus 로고
    • Energy preserving time integration for constrained multibody systems
    • Lens EV, Cardona A, Géradin M. Energy preserving time integration for constrained multibody systems. Multibody System Dynamics 2004; 11(1):41-61.
    • (2004) Multibody System Dynamics , vol.11 , Issue.1 , pp. 41-61
    • Lens, E.V.1    Cardona, A.2    Géradin, M.3
  • 16
    • 24044436529 scopus 로고    scopus 로고
    • Explicit momentum-conserving integrator for dynamics of rigid bodies approximating the midpoint Lie algorithm
    • Krysl P. Explicit momentum-conserving integrator for dynamics of rigid bodies approximating the midpoint Lie algorithm. International Journal for Numerical Methods in Engineering 2005; 63:2171-2193.
    • (2005) International Journal for Numerical Methods in Engineering , vol.63 , pp. 2171-2193
    • Krysl, P.1
  • 17
    • 48349116062 scopus 로고    scopus 로고
    • Formulation and performance of variational integrators for rotating bodies
    • Romero I. Formulation and performance of variational integrators for rotating bodies. Computational Mechanics 2008; 42:825-836.
    • (2008) Computational Mechanics , vol.42 , pp. 825-836
    • Romero, I.1
  • 20
    • 0003755154 scopus 로고
    • (2nd edn). Springer: Berlin
    • Curtis ML. Matrix Groups (2nd edn). Springer: Berlin, 1984.
    • (1984) Matrix Groups
    • Curtis, M.L.1
  • 22
    • 0026817485 scopus 로고
    • Quaternion kinematic and dynamic differential equations
    • Chou JCK. Quaternion kinematic and dynamic differential equations. IEEE Transactions on Robotics and Automation 1992; 8:(1):53-64.
    • (1992) IEEE Transactions on Robotics and Automation , vol.8 , Issue.1 , pp. 53-64
    • Chou, J.C.K.1
  • 23
    • 33746166784 scopus 로고    scopus 로고
    • The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: Multibody dynamics
    • Betsch P, Leyendecker S. The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. International Journal for Numerical Methods in Engineering 2006; 67(4):499-552.
    • (2006) International Journal for Numerical Methods in Engineering , vol.67 , Issue.4 , pp. 499-552
    • Betsch, P.1    Leyendecker, S.2
  • 24
    • 0008582162 scopus 로고    scopus 로고
    • Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration
    • Gonzalez O. Mechanical systems subject to holonomic constraints: differential-algebraic formulations and conservative integration. Physica D 1999; 132:165-174.
    • (1999) Physica D , vol.132 , pp. 165-174
    • Gonzalez, O.1
  • 25
    • 0037051754 scopus 로고    scopus 로고
    • Conservation properties of a time FE method. Part III: Mechanical systems with holonomic constraints
    • Betsch P, Steinmann P. Conservation properties of a time FE method. Part III: mechanical systems with holonomic constraints. International Journal for Numerical Methods in Engineering 2002; 53:2271-2304.
    • (2002) International Journal for Numerical Methods in Engineering , vol.53 , pp. 2271-2304
    • Betsch, P.1    Steinmann, P.2
  • 26
    • 0003014117 scopus 로고    scopus 로고
    • Time integration and discrete Hamiltonian systems
    • Gonzalez O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science 1996; 6:449-467.
    • (1996) Journal of Nonlinear Science , vol.6 , pp. 449-467
    • Gonzalez, O.1
  • 27
    • 25444502638 scopus 로고    scopus 로고
    • The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: Holonomic constraints
    • Betsch P. The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: holonomic constraints. Computer Methods in Applied Mechanics and Engineering 2005; 194(50-52): 5159-5190.
    • (2005) Computer Methods in Applied Mechanics and Engineering , vol.194 , Issue.50-52 , pp. 5159-5190
    • Betsch, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.