메뉴 건너뛰기




Volumn 72, Issue 10-12, 2009, Pages 2649-2658

Simultaneous input variable and basis function selection for RBF networks

Author keywords

Basis function selection; Feature selection; Feedforward neural network; Function approximation; Input selection; Radial basis function network; RBF; Regression

Indexed keywords

BASIS FUNCTION SELECTION; FEATURE SELECTION; FUNCTION APPROXIMATION; INPUT SELECTION; RBF; REGRESSION;

EID: 67349221521     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.10.003     Document Type: Article
Times cited : (21)

References (52)
  • 1
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 97 (1997) 245-271
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 56449120265 scopus 로고    scopus 로고
    • Sequential input selection algorithm for long-term prediction of time series
    • Tikka J., and Hollmén J. Sequential input selection algorithm for long-term prediction of time series. Neurocomputing 71 (2008) 2604-2615
    • (2008) Neurocomputing , vol.71 , pp. 2604-2615
    • Tikka, J.1    Hollmén, J.2
  • 6
    • 33845980222 scopus 로고    scopus 로고
    • Neural input selection-A fast model-based approach
    • Li K., and Peng J.-X. Neural input selection-A fast model-based approach. Neurocomputing 70 (2007) 762-769
    • (2007) Neurocomputing , vol.70 , pp. 762-769
    • Li, K.1    Peng, J.-X.2
  • 7
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., and Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70 (2007) 1276-1288
    • (2007) Neurocomputing , vol.70 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 11
    • 38149072512 scopus 로고    scopus 로고
    • Input selection for radial basis function networks by constrained optimization
    • Proc. The 17th International Conference on Artificial Neural Networks ICANN, Springer
    • J. Tikka, Input selection for radial basis function networks by constrained optimization, in: Proc. The 17th International Conference on Artificial Neural Networks (ICANN 2007), Lecture Notes in Computer Science, Vol. 4668, Springer, 239-248.
    • (2007) Lecture Notes in Computer Science , vol.4668 , pp. 239-248
    • Tikka, J.1
  • 12
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • Park J., and Sandberg I.W. Universal approximation using radial-basis-function networks. Neural Computation 3 (1991) 246-257
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 13
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U., and Korn O. Model selection in neural networks. Neural Networks 12 (1999) 309-323
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 14
    • 0003599567 scopus 로고    scopus 로고
    • Introduction to radial basis functions networks
    • Technical Report, Edinburgh University, Edinburgh, Scotland, UK, April
    • M.J. Orr, Introduction to radial basis functions networks, Technical Report, Edinburgh University, Edinburgh, Scotland, UK, April 1996.
    • (1996)
    • Orr, M.J.1
  • 15
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., and Darken C.J. Fast learning in networks of locally-tuned processing units. Neural Computation 1 (1989) 218-294
    • (1989) Neural Computation , vol.1 , pp. 218-294
    • Moody, J.1    Darken, C.J.2
  • 17
    • 0345328110 scopus 로고    scopus 로고
    • On the kernel widths in radial-basis function networks
    • Benoudjit N., and Verleysen M. On the kernel widths in radial-basis function networks. Neural Processing Letters 18 (2003) 139-154
    • (2003) Neural Processing Letters , vol.18 , pp. 139-154
    • Benoudjit, N.1    Verleysen, M.2
  • 18
    • 33751560009 scopus 로고
    • Regularization in the selection of radial basis function centers
    • Orr M.J. Regularization in the selection of radial basis function centers. Neural Computation 7 (1995) 606-623
    • (1995) Neural Computation , vol.7 , pp. 606-623
    • Orr, M.J.1
  • 22
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl A.E., and Kennard R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12 (1970) 55-67
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 23
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: robustness and sparse approximation
    • Suykens J.A.K., De Brabanter J., Lukas L., and Vadewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48 (2002) 85-105
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vadewalle, J.4
  • 26
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • Cawley G.C., and Talbot N.L.C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks 17 (2002) 1467-1475
    • (2002) Neural Networks , vol.17 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 28
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Computation 3 (1991) 213-225
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 29
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • Kadirkamanathan V., and Niranjan M. A function estimation approach to sequential learning with neural networks. Neural Computation 5 (1993) 954-975
    • (1993) Neural Computation , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 30
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L., Sundararajan N., and Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation 9 (1997) 461-478
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 31
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.-B., Saratchandran P., and Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 16 (2005) 57-67
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 32
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang G.-B., Zhu Q.-Y., and Siew C.-K. Extreme learning machine: Theory and applications. Neurocomputing 70 (2006) 489-501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 33
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3 (2003) 1371-1382
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 38
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Leray P., and Gallinari P. Feature selection with neural networks. Behaviormetrika 26 (1999) 145-166
    • (1999) Behaviormetrika , vol.26 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 40
    • 33745684650 scopus 로고    scopus 로고
    • Comparison of relevance learning vector quantization with other metric adaptive classification methods
    • Villman Th., Schleif F., and Hammer B. Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19 (2006) 610-622
    • (2006) Neural Networks , vol.19 , pp. 610-622
    • Villman, Th.1    Schleif, F.2    Hammer, B.3
  • 41
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., and Girosi F. Networks for approximation and learning. Proceedings of the IEEE 78 (1990) 1481-1497
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 43
    • 34548232392 scopus 로고    scopus 로고
    • Input selection and shrinkage in multiresponse linear regression
    • Similä T., and Tikka J. Input selection and shrinkage in multiresponse linear regression. Computational Statistics & Data Analysis 52 (2007) 406-422
    • (2007) Computational Statistics & Data Analysis , vol.52 , pp. 406-422
    • Similä, T.1    Tikka, J.2
  • 45
    • 38049108135 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: A comparative study and two new approaches
    • Proc. The 18th European Conference on Machine Learning ECML, Springer
    • M. Schmidt, G. Fung, R. Rosales, Fast optimization methods for L1 regularization: A comparative study and two new approaches, in: Proc. The 18th European Conference on Machine Learning (ECML 2007), Lecture Notes in Computer Science, vol. 4701, Springer, 286-297.
    • (2007) Lecture Notes in Computer Science , vol.4701 , pp. 286-297
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 46
    • 80955177430 scopus 로고    scopus 로고
    • Some notes on alternating optimization
    • Proc. The 2002 AFSS International Conference on Fuzzy Systems AFSS, Springer
    • J.C. Bezdek, R.J. Hathaway, Some notes on alternating optimization, in: Proc. The 2002 AFSS International Conference on Fuzzy Systems (AFSS 2002), Lecture Notes in Computer Science, vol. 2275, Springer, 288-300.
    • (2002) Lecture Notes in Computer Science , vol.2275 , pp. 288-300
    • Bezdek, J.C.1    Hathaway, R.J.2
  • 50
    • 0026388562 scopus 로고
    • Grouped coordinate minimization using Newton's method for inexact minimization in one vector coordinate
    • Hathaway R.J., and Bezdek J.C. Grouped coordinate minimization using Newton's method for inexact minimization in one vector coordinate. Journal of Optimization Theory and Applications 71 (1991) 503-516
    • (1991) Journal of Optimization Theory and Applications , vol.71 , pp. 503-516
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 51
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. The Annals of Statistics 19 (1991) 1-141
    • (1991) The Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.