메뉴 건너뛰기




Volumn 70, Issue 4-6, 2007, Pages 762-769

Neural input selection-A fast model-based approach

Author keywords

Linear in the parameters model; Model based approach; Modeling and control; Neural input selection; Nonlinear systems

Indexed keywords

COMPUTER SIMULATION; IDENTIFICATION (CONTROL SYSTEMS); MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS;

EID: 33845980222     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.10.011     Document Type: Article
Times cited : (41)

References (32)
  • 1
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U., and Korn O. Model selection in neural networks. Neural Networks 12 (1999) 309-323
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 2
    • 0024685547 scopus 로고
    • Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator
    • Billings S.A., Chen S., and Korenberg M.J. Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int. J. Control 49 (1989) 2157-2189
    • (1989) Int. J. Control , vol.49 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 3
    • 33846030979 scopus 로고    scopus 로고
    • A. Bjorck, Numerical methods for least squares problems, Frontiers in Applied Mathematics. Soc. Ind. Applied Math., Philadelphia, 1995.
  • 4
    • 33845974280 scopus 로고    scopus 로고
    • B.V. Bonnlander, A.S. Weigend, Selecting input variables using mutual information and nonparamteric density estimation, in: Proceedings of the 1994 International Symposium Artificial Neural Networks (ISANN'94), Tainan, Taiwan, 1994, pp. 42-50.
  • 6
  • 7
    • 84954943722 scopus 로고
    • Neural network for nonlinear dynamic system modelling and identification
    • Chen S., and Billings S.A. Neural network for nonlinear dynamic system modelling and identification. Int. J. Control 56 (1992) 319-346
    • (1992) Int. J. Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 8
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to nonlinear system identification
    • Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to nonlinear system identification. Int. J Control 50 (1989) 1873-1896
    • (1989) Int. J Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 11
    • 0028495332 scopus 로고
    • Pruning recurrent neural networks for improved generalization performance
    • Giles C.L., and Omlin C.W. Pruning recurrent neural networks for improved generalization performance. IEEE Trans. Neural Networks 5 (September 1994) 848-851
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 848-851
    • Giles, C.L.1    Omlin, C.W.2
  • 12
    • 0242637124 scopus 로고    scopus 로고
    • Combining genetic optimization with hybrid learning algorithm for radial basis function neural networks
    • Guo L., Huang D.S., and Zhao W. Combining genetic optimization with hybrid learning algorithm for radial basis function neural networks. IEE Electron. Lett. 139 22 (2003) 1600-1601
    • (2003) IEE Electron. Lett. , vol.139 , Issue.22 , pp. 1600-1601
    • Guo, L.1    Huang, D.S.2    Zhao, W.3
  • 13
    • 0001352974 scopus 로고
    • Pruning from adaptive regularization
    • Hansen L.K., and Rasmussen C.E. Pruning from adaptive regularization. Neural Comput. 6 6 (1994) 1223-1232
    • (1994) Neural Comput. , vol.6 , Issue.6 , pp. 1223-1232
    • Hansen, L.K.1    Rasmussen, C.E.2
  • 14
    • 0027335201 scopus 로고    scopus 로고
    • X. He, H. Asada, A new method for identifying orders of inputoutput models for nonlinear dynamic system, in: Proceedings of the American Control Conference San Francisco, CA, 1993, pp. 2520-2523.
  • 15
    • 0000759063 scopus 로고    scopus 로고
    • Radial basis probabilistic neural networks: Model and application
    • Huang D.S. Radial basis probabilistic neural networks: Model and application. Int. J. Pattern Recognition Artif. Intell. 13 7 (1999) 1083-1101
    • (1999) Int. J. Pattern Recognition Artif. Intell. , vol.13 , Issue.7 , pp. 1083-1101
    • Huang, D.S.1
  • 16
    • 0033344914 scopus 로고    scopus 로고
    • Application of generalized radial basis function networks to recognition of radar targets
    • Huang D.S. Application of generalized radial basis function networks to recognition of radar targets. Int. J. Pattern Recognition Artif. Intell. 13 6 (1999) 945-962
    • (1999) Int. J. Pattern Recognition Artif. Intell. , vol.13 , Issue.6 , pp. 945-962
    • Huang, D.S.1
  • 17
    • 10444248803 scopus 로고    scopus 로고
    • Determining the centers of radial basis probabilities neural networks by recursive orthogonal least square algorithms
    • Huang D.S., and Zhao W.-B. Determining the centers of radial basis probabilities neural networks by recursive orthogonal least square algorithms. Appl. Math. Comput. 162 1 (2005) 461-473
    • (2005) Appl. Math. Comput. , vol.162 , Issue.1 , pp. 461-473
    • Huang, D.S.1    Zhao, W.-B.2
  • 18
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.-B., Saratchandran P., and Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Trans. Neural Networks 16 (2005) 57-67
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 20
    • 0030385720 scopus 로고    scopus 로고
    • J.-S.R. Jang, Input selection for ANFIS learning, in: Proceedings of IEEE International Conference Fuzzy System, vol. 2, New York, 1996, pp. 1493-1499.
  • 22
    • 33845983112 scopus 로고    scopus 로고
    • Y. Le Cun, J.S. Denker, S.A. Solla, Optimal brain damage, in: D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA, 1990, pp. 598-605.
  • 23
    • 4444327094 scopus 로고    scopus 로고
    • K. Li, A New Input Selection Method for Neural Modeling of Nonlinear Complex Systems, in: Proceedings of the fifth World Congress on Intelligent Control and Automation (WCICA'04), Hangzhou, China, June 15-19, 2004, pp. 2018-2021.
  • 24
    • 79960729016 scopus 로고    scopus 로고
    • K. Li, Eng-genes: A new genetic modelling approach for nonlinear dynamic systems, in: Proceedings of IFAC World Congress on Automatic Control, July, Prague, 2005.
  • 27
    • 0033097490 scopus 로고    scopus 로고
    • Variable selection in nonlinear systems modelling
    • Mao K.Z., and Billings S.A. Variable selection in nonlinear systems modelling. Mech. Syst. Signal Process. 13 2 (1999) 240-255
    • (1999) Mech. Syst. Signal Process. , vol.13 , Issue.2 , pp. 240-255
    • Mao, K.Z.1    Billings, S.A.2
  • 28
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narenda K.S., and Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1 (1990) 4-27
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narenda, K.S.1    Parthasarathy, K.2
  • 29
    • 0347592205 scopus 로고    scopus 로고
    • An Identification algorithm for polynomial NARX Models based on simulation error minimization
    • Piroddi L., and Spinelli W. An Identification algorithm for polynomial NARX Models based on simulation error minimization. Int. J. Control 76 17 (2003) 1767-1781
    • (2003) Int. J. Control , vol.76 , Issue.17 , pp. 1767-1781
    • Piroddi, L.1    Spinelli, W.2
  • 30
    • 0028553996 scopus 로고    scopus 로고
    • A. Poncet, G.S. Moschytz, Optimal order for signal and system modeling, in: Proceedings of the IEEE International Symposium Circuits and System, vol. 6, New York, 1994, pp. 221-224.
  • 31
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • Reed R. Pruning algorithms-a survey. IEEE Trans. Neural Networks 4 (September 1993) 740-747
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 32
    • 0033881234 scopus 로고    scopus 로고
    • Neural model input selection from a MIMO chemical process
    • Yu D.L., Gomm J.B., and Williams D. Neural model input selection from a MIMO chemical process. Eng. Appl. Artif. Intell. 13 (2000) 12-15
    • (2000) Eng. Appl. Artif. Intell. , vol.13 , pp. 12-15
    • Yu, D.L.1    Gomm, J.B.2    Williams, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.