-
3
-
-
0001508024
-
-
10.1103/PhysRevLett.88.256601
-
C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002). 10.1103/PhysRevLett.88.256601
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 256601
-
-
Attaccalite, C.1
Moroni, S.2
Gori-Giorgi, P.3
Bachelet, G.B.4
-
5
-
-
27744444047
-
-
10.1103/PhysRevLett.94.226405
-
S. De Palo, M. Botti, S. Moroni, and G. Senatore, Phys. Rev. Lett. 94, 226405 (2005). 10.1103/PhysRevLett.94.226405
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 226405
-
-
De Palo, S.1
Botti, M.2
Moroni, S.3
Senatore, G.4
-
6
-
-
33749159480
-
-
10.1103/PhysRevB.72.075308
-
Y. Zhang and S. Das Sarma, Phys. Rev. B 72, 075308 (2005). 10.1103/PhysRevB.72.075308
-
(2005)
Phys. Rev. B
, vol.72
, pp. 075308
-
-
Zhang, Y.1
Das Sarma, S.2
-
8
-
-
29144533377
-
-
10.1103/PhysRevLett.95.256603
-
Y. Zhang and S. Das Sarma, Phys. Rev. Lett. 95, 256603 (2005). 10.1103/PhysRevLett.95.256603
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 256603
-
-
Zhang, Y.1
Das Sarma, S.2
-
9
-
-
33746594157
-
-
10.1103/PhysRevB.74.075301
-
R. Asgari and B. Tanatar, Phys. Rev. B 74, 075301 (2006). 10.1103/PhysRevB.74.075301
-
(2006)
Phys. Rev. B
, vol.74
, pp. 075301
-
-
Asgari, R.1
Tanatar, B.2
-
10
-
-
37149026667
-
-
10.1103/PhysRevB.76.233301
-
T. Gokmen, M. Padmanabhan, E. Tutuc, M. Shayegan, S. De Palo, S. Moroni, and G. Senatore, Phys. Rev. B 76, 233301 (2007). 10.1103/PhysRevB.76.233301
-
(2007)
Phys. Rev. B
, vol.76
, pp. 233301
-
-
Gokmen, T.1
Padmanabhan, M.2
Tutuc, E.3
Shayegan, M.4
De Palo, S.5
Moroni, S.6
Senatore, G.7
-
11
-
-
36049053894
-
-
10.1103/PhysRev.174.823
-
F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 (1968). 10.1103/PhysRev.174.823
-
(1968)
Phys. Rev.
, vol.174
, pp. 823
-
-
Fang, F.F.1
Stiles, P.J.2
-
13
-
-
3543107230
-
-
10.1103/PhysRevLett.82.3875
-
T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys. Rev. Lett. 82, 3875 (1999). 10.1103/PhysRevLett.82.3875
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 3875
-
-
Okamoto, T.1
Hosoya, K.2
Kawaji, S.3
Yagi, A.4
-
15
-
-
0035920949
-
-
10.1103/PhysRevLett.87.086401
-
S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik, and T. M. Klapwijk, Phys. Rev. Lett. 87, 086401 (2001). 10.1103/PhysRevLett.87.086401
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 086401
-
-
Vitkalov, S.A.1
Zheng, H.2
Mertes, K.M.3
Sarachik, M.P.4
Klapwijk, T.M.5
-
16
-
-
0035920787
-
-
10.1103/PhysRevLett.87.086801
-
A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 87, 086801 (2001). 10.1103/PhysRevLett.87.086801
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 086801
-
-
Shashkin, A.A.1
Kravchenko, S.V.2
Dolgopolov, V.T.3
Klapwijk, T.M.4
-
17
-
-
0037104177
-
-
10.1103/PhysRevB.66.073303
-
A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002). 10.1103/PhysRevB.66.073303
-
(2002)
Phys. Rev. B
, vol.66
, pp. 073303
-
-
Shashkin, A.A.1
Kravchenko, S.V.2
Dolgopolov, V.T.3
Klapwijk, T.M.4
-
18
-
-
0037071376
-
-
10.1103/PhysRevLett.88.196404
-
V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002). 10.1103/PhysRevLett.88.196404
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 196404
-
-
Pudalov, V.M.1
Gershenson, M.E.2
Kojima, H.3
Butch, N.4
Dizhur, E.M.5
Brunthaler, G.6
Prinz, A.7
Bauer, G.8
-
19
-
-
4143113129
-
-
10.1103/PhysRevLett.91.046403
-
A. A. Shashkin, Maryam Rahimi, S. Anissimova, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 91, 046403 (2003). 10.1103/PhysRevLett.91.046403
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 046403
-
-
Shashkin, A.A.1
Rahimi, M.2
Anissimova, S.3
Kravchenko, S.V.4
Dolgopolov, V.T.5
Klapwijk, T.M.6
-
20
-
-
0037422975
-
-
10.1103/PhysRevLett.90.056805
-
J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 90, 056805 (2003). 10.1103/PhysRevLett.90.056805
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 056805
-
-
Zhu, J.1
Stormer, H.L.2
Pfeiffer, L.N.3
Baldwin, K.W.4
West, K.W.5
-
21
-
-
0038502191
-
-
10.1103/PhysRevB.67.205407
-
O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, Phys. Rev. B 67, 205407 (2003). 10.1103/PhysRevB.67.205407
-
(2003)
Phys. Rev. B
, vol.67
, pp. 205407
-
-
Prus, O.1
Yaish, Y.2
Reznikov, M.3
Sivan, U.4
Pudalov, V.5
-
22
-
-
0042028388
-
-
10.1103/PhysRevB.67.241309
-
E. Tutuc, S. Melinte, E. P. De Poortere, M. Shayegan, and R. Winkler, Phys. Rev. B 67, 241309 (R) (2003). 10.1103/PhysRevB.67.241309
-
(2003)
Phys. Rev. B
, vol.67
, pp. 241309
-
-
Tutuc, E.1
Melinte, S.2
De Poortere, E.P.3
Shayegan, M.4
Winkler, R.5
-
23
-
-
3042831716
-
-
10.1103/PhysRevLett.92.226401
-
K. Vakili, Y. P. Shkolnikov, E. Tutuc, E. P. De Poortere, and M. Shayegan, Phys. Rev. Lett. 92, 226401 (2004). 10.1103/PhysRevLett.92.226401
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 226401
-
-
Vakili, K.1
Shkolnikov, Y.P.2
Tutuc, E.3
De Poortere, E.P.4
Shayegan, M.5
-
24
-
-
18244368987
-
-
10.1103/PhysRevLett.94.016405
-
Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 94, 016405 (2005). 10.1103/PhysRevLett.94.016405
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 016405
-
-
Tan, Y.-W.1
Zhu, J.2
Stormer, H.L.3
Pfeiffer, L.N.4
Baldwin, K.W.5
West, K.W.6
-
25
-
-
33144462206
-
-
10.1103/PhysRevB.73.045334
-
Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. B 73, 045334 (2006). 10.1103/PhysRevB.73.045334
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045334
-
-
Tan, Y.-W.1
Zhu, J.2
Stormer, H.L.3
Pfeiffer, L.N.4
Baldwin, K.W.5
West, K.W.6
-
26
-
-
47049101781
-
-
10.1103/PhysRevLett.101.026402
-
M. Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan, Phys. Rev. Lett. 101, 026402 (2008). 10.1103/PhysRevLett.101.026402
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 026402
-
-
Padmanabhan, M.1
Gokmen, T.2
Bishop, N.C.3
Shayegan, M.4
-
28
-
-
34547264200
-
-
10.1002/pssb.200642212
-
M. Shayegan, E. P. De Poortere, O. Gunawan, Y. P. Shkolnikov, E. Tutuc, and K. Vakili, Phys. Status Solidi B 243, 3629 (2006). 10.1002/pssb.200642212
-
(2006)
Phys. Status Solidi B
, vol.243
, pp. 3629
-
-
Shayegan, M.1
De Poortere, E.P.2
Gunawan, O.3
Shkolnikov, Y.P.4
Tutuc, E.5
Vakili, K.6
-
29
-
-
33847273445
-
-
10.1063/1.109128
-
T. S. Lay, J. J. Heremans, Y. W. Suen, M. B. Santos, K. Hirakawa, M. Shayegan, and A. Zrenner, Appl. Phys. Lett. 62, 3120 (1993). 10.1063/1.109128
-
(1993)
Appl. Phys. Lett.
, vol.62
, pp. 3120
-
-
Lay, T.S.1
Heremans, J.J.2
Suen, Y.W.3
Santos, M.B.4
Hirakawa, K.5
Shayegan, M.6
Zrenner, A.7
-
30
-
-
0032666062
-
-
10.1016/S1386-9477(99)00018-1
-
H. Momose, N. Moria, C. Hamaguchia, T. Ikaidab, H. Arimotob, and N. Miura, Physica E 4, 286 (1999). 10.1016/S1386-9477(99)00018-1
-
(1999)
Physica e
, vol.4
, pp. 286
-
-
Momose, H.1
Moria, N.2
Hamaguchia, C.3
Ikaidab, T.4
Arimotob, H.5
Miura, N.6
-
32
-
-
67049088633
-
-
We use mb = mt =0.205±0.005 for the out-of-plane valley, based on values reported in different studies of either the cyclotron resonance or the ballistic transport measurements (Refs.).
-
We use mb = mt =0.205±0.005 for the out-of-plane valley, based on values reported in different studies of either the cyclotron resonance or the ballistic transport measurements (Refs.).
-
-
-
-
33
-
-
58149168717
-
-
In a 2DES with finite electron layer thickness, parallel magnetic couples to the orbital motion of the electrons and leads to an increase in m□ [10.1103/PhysRevB.78.233306
-
In a 2DES with finite electron layer thickness, parallel magnetic couples to the orbital motion of the electrons and leads to an increase in m□ [T. Gokmen, M. Padmanabhan, O. Gunawan, Y. P. Shkolnikov, K. Vakili, E. P. DePoortere, and M. Shayegan, Phys. Rev. B 78, 233306 (2008)]. However because of the very small electron layer thickness in our narrow quantum well, we expect that the mass enhancement is less than 5% even at B□ =30□T. 10.1103/PhysRevB.78.233306
-
(2008)
Phys. Rev. B
, vol.78
, pp. 233306
-
-
Gokmen, T.1
Padmanabhan, M.2
Gunawan, O.3
Shkolnikov, Y.P.4
Vakili, K.5
Depoortere, E.P.6
Shayegan, M.7
-
34
-
-
33750441111
-
-
10.1063/1.2370504
-
K. Vakili, Y. P. Shkolnikov, E. Tutuc, E. P. De Poortere, M. Padmanabhan, and M. Shayegan, Appl. Phys. Lett. 89, 172118 (2006). 10.1063/1.2370504
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 172118
-
-
Vakili, K.1
Shkolnikov, Y.P.2
Tutuc, E.3
De Poortere, E.P.4
Padmanabhan, M.5
Shayegan, M.6
-
38
-
-
67049161025
-
-
We emphasize that in all cases our data can be fit reasonably well to the Dingle expression in the whole temperature and magnetic field range by assuming two constants τq and m□ (see, e.g., Fig. 6). However, this does not justify that τq is independent of T; indeed a given data set can be fit equally well to the Dingle expression with a different, fixed m□, and a τq that has some T dependence. Since m□ and the T dependence of τq cannot be determined independently, in our second analysis method we use the T dependence of the background resistance to estimate the T dependence of 1/ τq and deduce m□.
-
We emphasize that in all cases our data can be fit reasonably well to the Dingle expression in the whole temperature and magnetic field range by assuming two constants τq and m□ (see, e.g., Fig. 6). However, this does not justify that τq is independent of T; indeed a given data set can be fit equally well to the Dingle expression with a different, fixed m□, and a τq that has some T dependence. Since m□ and the T dependence of τq cannot be determined independently, in our second analysis method we use the T dependence of the background resistance to estimate the T dependence of 1/ τq and deduce m□.
-
-
-
-
39
-
-
67049088632
-
-
Although the T dependence of Ro and τq tend to cancel each other in the fitting of m□, it is the T dependence of τq that dominates since τq appears inside the exponential term.
-
Although the T dependence of Ro and τq tend to cancel each other in the fitting of m□, it is the T dependence of τq that dominates since τq appears inside the exponential term.
-
-
-
-
40
-
-
67049162620
-
-
The partially spin-polarized masses are also reported in Ref. However those masses are not deduced at the coincidence condition. Setting the coincidence condition is important because when the spin-up and spin-down levels do not overlap, the gap is smaller than the cyclotron energy and one may get artificially larger values for m□.
-
The partially spin-polarized masses are also reported in Ref. However those masses are not deduced at the coincidence condition. Setting the coincidence condition is important because when the spin-up and spin-down levels do not overlap, the gap is smaller than the cyclotron energy and one may get artificially larger values for m□.
-
-
-
-
42
-
-
0034899883
-
-
10.1103/PhysRevB.63.113102
-
I. F. Herbut, Phys. Rev. B 63, 113102 (2001). 10.1103/PhysRevB.63.113102
-
(2001)
Phys. Rev. B
, vol.63
, pp. 113102
-
-
Herbut, I.F.1
-
43
-
-
0034711404
-
-
10.1126/science.290.5496.1546
-
E. P. De Poortere, E. Tutuc, S. J. Papadakis, and M. Shayegan, Science 290, 1546 (2000). 10.1126/science.290.5496.1546
-
(2000)
Science
, vol.290
, pp. 1546
-
-
De Poortere, E.P.1
Tutuc, E.2
Papadakis, S.J.3
Shayegan, M.4
-
44
-
-
67049161027
-
-
In our study, the "partially-spin-polarized" regime corresponds to spin-polarization ranging from 4% to 20%.
-
In our study, the "partially-spin-polarized" regime corresponds to spin-polarization ranging from 4% to 20%.
-
-
-
-
45
-
-
67049167592
-
-
In 2D systems the nonuniversal correction arising from the finite layer thickness is a conceptually simple form factor that modifies the bare Coulomb interaction. Similarly, the Fermi contour anisotropy can be incorporated in Coulomb interaction by making a coordinate transformation that makes the Fermi surface isotropic but the interactions anisotropic.
-
In 2D systems the nonuniversal correction arising from the finite layer thickness is a conceptually simple form factor that modifies the bare Coulomb interaction. Similarly, the Fermi contour anisotropy can be incorporated in Coulomb interaction by making a coordinate transformation that makes the Fermi surface isotropic but the interactions anisotropic.
-
-
-
|