-
3
-
-
13444270826
-
Mater. Sci. Eng. R
-
Zhuang, D.; Edgar, J. H. Mater. Sci. Eng. R: Reports 2005, 48, 1.
-
(2005)
Reports
, vol.48
, pp. 1
-
-
Zhuang, D.1
Edgar, J.H.2
-
6
-
-
0002943026
-
-
Chrisey, D. B, Hubler, G. K, Eds, Wiley-Interscience: New York, and references therein
-
Foltyn, S. R. In Pulsed Laser Deposition of Thin Films; Chrisey, D. B., Hubler, G. K., Eds.; Wiley-Interscience: New York, 1994; pp. 89-113, and references therein..
-
(1994)
Pulsed Laser Deposition of Thin Films
, pp. 89-113
-
-
Foltyn, S.R.1
-
7
-
-
61449174212
-
-
Bonch-Bruevich, A. M.; Kochengina, M. N.; Libenson, M. N.; Makin, V. S.; Poudkov, S. D.; Troubaev, V. V. lzv. Acad. Sci., ser. Fiz. 1982, 46, 1186.
-
Bonch-Bruevich, A. M.; Kochengina, M. N.; Libenson, M. N.; Makin, V. S.; Poudkov, S. D.; Troubaev, V. V. lzv. Acad. Sci., ser. Fiz. 1982, 46, 1186.
-
-
-
-
8
-
-
0001406936
-
-
Sipe, J. E.; Young, J. F.; Preston, J. S.; van Driel, H. M. Phys. Rev. B 1983, 27, 1141.
-
(1983)
Phys. Rev. B
, vol.27
, pp. 1141
-
-
Sipe, J.E.1
Young, J.F.2
Preston, J.S.3
van Driel, H.M.4
-
9
-
-
33744604184
-
-
Young, J. F.; Preston, J. S.; van Driel, H. M.; Sipe, J. E. Phys. Rev. B 1983, 27, 1155.
-
(1983)
Phys. Rev. B
, vol.27
, pp. 1155
-
-
Young, J.F.1
Preston, J.S.2
van Driel, H.M.3
Sipe, J.E.4
-
10
-
-
35949025770
-
-
Young, J. F.; Sipe, J. E.; van Driel, H. M. Phys. Rev. B 1984, 30, 2001.
-
(2001)
Phys. Rev. B
, vol.1984
, pp. 30
-
-
Young, J.F.1
Sipe, J.E.2
van Driel, H.M.3
-
11
-
-
0000050015
-
-
Her, T.-H.; Finlay, R. J.; Wu, C.; Deliwala, S.; Mazur, E. Appl. Phys. Lett. 1998, 73, 1673.
-
(1998)
Appl. Phys. Lett
, vol.73
, pp. 1673
-
-
Her, T.-H.1
Finlay, R.J.2
Wu, C.3
Deliwala, S.4
Mazur, E.5
-
12
-
-
0032607129
-
-
Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H. Appl. Phys. Lett. 1999, 74, 2322.
-
(1999)
Appl. Phys. Lett
, vol.74
, pp. 2322
-
-
Pedraza, A.J.1
Fowlkes, J.D.2
Lowndes, D.H.3
-
13
-
-
0034891839
-
-
Dolgaev, S. I.; Lavrishev, S. V.; Lyalin, A. A.; Simakin, A. V.; Voronov, V. V.; Shafeev, G. A. Appl. Phys. A: Mater. Sci. Process. 2001, 73, 177.
-
(2001)
Appl. Phys. A: Mater. Sci. Process
, vol.73
, pp. 177
-
-
Dolgaev, S.I.1
Lavrishev, S.V.2
Lyalin, A.A.3
Simakin, A.V.4
Voronov, V.V.5
Shafeev, G.A.6
-
14
-
-
0037451314
-
-
Shen, M. Y.; Crouch, C. H.; Carey, J. E.; Younkin, R.; Mazur, E.; Sheehy, M.; Friend, C. M. Appl. Phys. Lett. 2003, 82, 1715.
-
(2003)
Appl. Phys. Lett
, vol.82
, pp. 1715
-
-
Shen, M.Y.1
Crouch, C.H.2
Carey, J.E.3
Younkin, R.4
Mazur, E.5
Sheehy, M.6
Friend, C.M.7
-
15
-
-
12844278863
-
-
Shen, M. Y.; Crouch, C. H.; Carey, J. E.; Mazur, E. Appl. Phys. Lett. 2004, 85, 5694.
-
(2004)
Appl. Phys. Lett
, vol.85
, pp. 5694
-
-
Shen, M.Y.1
Crouch, C.H.2
Carey, J.E.3
Mazur, E.4
-
16
-
-
61449134512
-
-
The wavelength of laser light in water is shortened from 800 to 600 nm because of the index of refraction of water
-
The wavelength of laser light in water is shortened from 800 to 600 nm because of the index of refraction of water.
-
-
-
-
17
-
-
84868902616
-
-
7 The ripple spacing is largely unaffected by the type of immersion liquid (water, oil, or alcohol).
-
7 The ripple spacing is largely unaffected by the type of immersion liquid (water, oil, or alcohol).
-
-
-
-
18
-
-
61449266969
-
-
The same two-step laser structuring process can be used to fabricate similar nanometer-scale rods on stainless steel and titanium immersed in a liquid
-
The same two-step laser structuring process can be used to fabricate similar nanometer-scale rods on stainless steel and titanium immersed in a liquid.
-
-
-
-
19
-
-
61449223291
-
-
Paper JTuC45, Washington, U.S.A, May
-
Shafeev, G. A.; Degert, J.; Lascoux, N.; Freysz, E. Proceedings of CLEO 2005, Paper JTuC45, Washington, U.S.A., May 2005.
-
(2005)
Proceedings of CLEO
-
-
Shafeev, G.A.1
Degert, J.2
Lascoux, N.3
Freysz, E.4
-
20
-
-
0001034485
-
-
Saeta, P.; Wang, J.; Siegal, Y.; Bloembergen, N.; Mazur, E. Phys. Rev. Lett. 1991, 67, 1023.
-
(1991)
Phys. Rev. Lett
, vol.67
, pp. 1023
-
-
Saeta, P.1
Wang, J.2
Siegal, Y.3
Bloembergen, N.4
Mazur, E.5
-
21
-
-
0001089205
-
-
Cavalleri, A.; Sokolowski-Tinten, K.; Bialkowski, J.; Schreiner, M.; von der Linde, D. J. Appl. Phys. 1999, 85, 3301.
-
(1999)
J. Appl. Phys
, vol.85
, pp. 3301
-
-
Cavalleri, A.1
Sokolowski-Tinten, K.2
Bialkowski, J.3
Schreiner, M.4
von der Linde, D.5
-
23
-
-
0033897122
-
-
Maatz, G.; Heisterkamp, A.; Lubatschowski, H.; Barcikowski, S.; Fallnich, C.; Welling, H.; Ertmer, W. J. Opt. A: Pure Appl. Opt. 2000, 2, 59.
-
(2000)
J. Opt. A: Pure Appl. Opt
, vol.2
, pp. 59
-
-
Maatz, G.1
Heisterkamp, A.2
Lubatschowski, H.3
Barcikowski, S.4
Fallnich, C.5
Welling, H.6
Ertmer, W.7
-
24
-
-
34249749793
-
-
Bernini, U.; Vetrella, U. B.; Cutolo, A.; de Iorio, I. Appl. Opt. 1987, 26, 4722.
-
(1987)
Appl. Opt
, vol.26
, pp. 4722
-
-
Bernini, U.1
Vetrella, U.B.2
Cutolo, A.3
de Iorio, I.4
-
25
-
-
12144251784
-
-
Kautek, W.; Rudolph, P.; Daminelli, G.; Hertwig, A. Proceedings of the SPIE - The International Society for Optical Engineering, 2004, 5448, 213.
-
(2004)
Proceedings of the SPIE - The International Society for Optical Engineering
, vol.5448
, pp. 213
-
-
Kautek, W.1
Rudolph, P.2
Daminelli, G.3
Hertwig, A.4
-
26
-
-
24144434937
-
-
Le Harzic, R.; Schuck, H.; Sauer, D.; Anhut, T.; Riemann, I.; Konig, K. Optics Express 2005, 13, 6651.
-
(2005)
Optics Express
, vol.13
, pp. 6651
-
-
Le Harzic, R.1
Schuck, H.2
Sauer, D.3
Anhut, T.4
Riemann, I.5
Konig, K.6
-
27
-
-
0000977072
-
-
Shank, C. V.; Yen, R.; Hirlimann, C. Phys. Rev. Lett. 1983, 50, 454.
-
(1983)
Phys. Rev. Lett
, vol.50
, pp. 454
-
-
Shank, C.V.1
Yen, R.2
Hirlimann, C.3
-
30
-
-
61449190153
-
-
To the naked eye, the resulting surfaces appear black. Optical characterization shows that in the wavelength range between 350 and 1000 nm, the absorptance of the silicon with the 120 nm ripples is about 80%, which is 20% higher than smooth silicon; while the absorptance of the nanorods forest is about 95%.
-
To the naked eye, the resulting surfaces appear black. Optical characterization shows that in the wavelength range between 350 and 1000 nm, the absorptance of the silicon with the 120 nm ripples is about 80%, which is 20% higher than smooth silicon; while the absorptance of the nanorods forest is about 95%.
-
-
-
-
33
-
-
61449150895
-
-
Crouch, C. H.; Shen, M. Y.; Carey, J. E.; Mazur, E. 2002MRS Fall Meeting, Symposium KK 3.4, 2002.
-
Crouch, C. H.; Shen, M. Y.; Carey, J. E.; Mazur, E. 2002MRS Fall Meeting, Symposium KK 3.4, 2002.
-
-
-
-
34
-
-
61449258738
-
-
Ph.D. Thesis, Harvard University
-
Carey, J. E. Ph.D. Thesis, Harvard University, 2004.
-
(2004)
-
-
Carey, J.E.1
|