메뉴 건너뛰기




Volumn 20, Issue 3, 2006, Pages 329-350

Selective voting - Getting more for less in sensor fusion

Author keywords

Decision trees; Ensemble methods; Information fusion; Machine learning; Performance measures; Selective voting

Indexed keywords

DECISION TREES; ENSEMBLE METHODS; INFORMATION FUSION; PERFORMANCE MEASURES;

EID: 33646887241     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001406004739     Document Type: Article
Times cited : (20)

References (27)
  • 1
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • K. M. Ali and M. J. Pazzani, Error reduction through learning multiple descriptions, Mach. Learn. 24(3) (1996) 173-202.
    • (1996) Mach. Learn , vol.24 , Issue.3 , pp. 173-202
    • Ali, K.M.1    Pazzani, M.J.2
  • 2
    • 0031069975 scopus 로고    scopus 로고
    • Voting over multiple condensed nearest neighbors
    • E. Alpaydin, Voting over multiple condensed nearest neighbors, Artif. Intell. Rev. 11(1-5) (1997) 115-132.
    • (1997) Artif. Intell. Rev. , vol.11 , Issue.1-5 , pp. 115-132
    • Alpaydin, E.1
  • 3
    • 33646780460 scopus 로고    scopus 로고
    • Comparisons of classification methods for screening potential compounds
    • A. An and Y. Wang, Comparisons of classification methods for screening potential compounds, IEEE Int. Conf. Data Mining (2001), pp. 1-2.
    • (2001) IEEE Int. Conf. Data Mining , pp. 1-2
    • An, A.1    Wang, Y.2
  • 4
    • 28344448004 scopus 로고    scopus 로고
    • Methods for combining heterogeneous sets of models
    • Workshop on New Research Problems for Machine Learning
    • D. Bahler and L. Navarro, Methods for combining heterogeneous sets of models, 17th Natl. Conf. Artificial Intelligence (AAAI 2000), Workshop on New Research Problems for Machine Learning (2000).
    • (2000) 17th Natl. Conf. Artificial Intelligence (AAAI 2000)
    • Bahler, D.1    Navarro, L.2
  • 5
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • S. D. Bay, Nearest neighbor classification from multiple feature subsets, Intell. Data Anal. 3(3) (1999) 191-209.
    • (1999) Intell. Data Anal. , vol.3 , Issue.3 , pp. 191-209
    • Bay, S.D.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996) 123-140.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Mach. Learn. 45(1) (2001) 5-32.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 85152630265 scopus 로고
    • A comparative evaluation of voting and meta-learning on partitioned data
    • Morgan Kaufmann
    • P. K. Chan and S. J. Stolfo, A comparative evaluation of voting and meta-learning on partitioned data, in Proc. Twelfth Int. Conf. Machine Learning (Morgan Kaufmann, 1995), pp. 90-98.
    • (1995) Proc. Twelfth Int. Conf. Machine Learning , pp. 90-98
    • Chan, P.K.1    Stolfo, S.J.2
  • 9
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, Wrappers for feature subset selection, Artif. Intell. 97(1-2) (1997) 273-324.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 10
    • 34548269884 scopus 로고    scopus 로고
    • Data mining for target marketing
    • eds. O. Maimon and L. Rokach (Springer)
    • N. Levin and J. Zahavi, Data mining for target marketing, in Data Mining and Knowledge Discovery Handbook, eds. O. Maimon and L. Rokach (Springer, 2005), pp. 1261-1300.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 1261-1300
    • Levin, N.1    Zahavi, J.2
  • 13
    • 0005980920 scopus 로고
    • Robust sensor fusion with statistical decision theory
    • eds. M. A. Abidi and R. C. Gonzalez (Academic Press)
    • R. McKendall and M. Mintz, Robust sensor fusion with statistical decision theory, in Data Fusion in Robotics and Machine Intelligence, eds. M. A. Abidi and R. C. Gonzalez (Academic Press, 1992), pp. 211-244.
    • (1992) Data Fusion in Robotics and Machine Intelligence , pp. 211-244
    • McKendall, R.1    Mintz, M.2
  • 16
    • 33749318929 scopus 로고    scopus 로고
    • Effective and efficient pruning of meta-models in a distributed data mining system
    • Columbia University CUCS-017-99
    • L. Prodromidis, S. J. Stolfo and P. K. Chan, Effective and efficient pruning of meta-models in a distributed data mining system, Technical Report, Columbia University (1999), CUCS-017-99.
    • (1999) Technical Report
    • Prodromidis, L.1    Stolfo, S.J.2    Chan, P.K.3
  • 18
    • 27844467756 scopus 로고    scopus 로고
    • Top down induction of decision trees classifiers: A survey
    • L. Rokach and O. Maimon, Top down induction of decision trees classifiers: a survey, IEEE SMC Trans. Part C 35(4) (2005) 476-487.
    • (2005) IEEE SMC Trans. Part C , vol.35 , Issue.4 , pp. 476-487
    • Rokach, L.1    Maimon, O.2
  • 19
    • 0001906968 scopus 로고    scopus 로고
    • Multi net systems
    • ed. A. J. C. Sharkey (Springer-Verlag, London)
    • A. Sharkey, Multi net systems, in Combining Articial Neural Nets, ed. A. J. C. Sharkey (Springer-Verlag, London, 1999), pp. 1-27.
    • (1999) Combining Articial Neural Nets , pp. 1-27
    • Sharkey, A.1
  • 20
    • 33646880072 scopus 로고    scopus 로고
    • Dynamic Bayes net approach to multimodal sensor fusion
    • October
    • A. Singhal and C. Brown, Dynamic Bayes net approach to multimodal sensor fusion, Proc. SPIE - Int. Soc. Optical Engineering, 3209 (October, 1997), pp. 2-10.
    • (1997) Proc. SPIE - Int. Soc. Optical Engineering , vol.3209 , pp. 2-10
    • Singhal, A.1    Brown, C.2
  • 22
    • 33646861258 scopus 로고    scopus 로고
    • Theory combination: An alternative to data combination
    • Department of Computer Science, University of Waikato
    • K. M. Ting and B. T. Low, Theory combination: an alternative to data combination, Working Paper 96/19, Department of Computer Science, University of Waikato (1996).
    • (1996) Working Paper , vol.96 , Issue.19
    • Ting, K.M.1    Low, B.T.2
  • 23
    • 84886362839 scopus 로고    scopus 로고
    • Model combination in the multiple data bathes scenario
    • Springer
    • K. M. Ting and B. T. Low, Model combination in the multiple data bathes scenario, in Proc. Ninth European Conf. Machine Learning (Springer, 1997), pp. 250-265.
    • (1997) Proc. Ninth European Conf. Machine Learning , pp. 250-265
    • Ting, K.M.1    Low, B.T.2
  • 24
    • 84884917330 scopus 로고    scopus 로고
    • Information fusion - Methods and aggregation operators
    • eds. O. Maimon and L. Rokach (Springer)
    • V. Torra, Information fusion - methods and aggregation operators, in Data Mining and Knowledge Discovery Handbook, eds. O. Maimon and L. Rokach (Springer, 2005), pp. 1005-1016.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 1005-1016
    • Torra, V.1
  • 25
    • 0026860706 scopus 로고
    • Methods of combining multiple models and their applications to handwriting recognition
    • L. K. Xu, A. Krzyzak and C. Suen, Methods of combining multiple models and their applications to handwriting recognition, IEEE Trans. Syst. Man. Cyb. 22(3) (1992) 418-435.
    • (1992) IEEE Trans. Syst. Man. Cyb. , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.K.1    Krzyzak, A.2    Suen, C.3
  • 26
    • 8344279588 scopus 로고    scopus 로고
    • Selective ensemble of decision trees
    • eds. G. Wang, Q. Liu, Y. Yao and A. Skowron Chongqing, China (May 26-29, 2003), Proceedings, Lecture Notes in Computer Science, (Springer)
    • Z.-H. Zhou and W. Tang, Selective ensemble of decision trees, in Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 9th Int. Conf., RSFDGrC 2003, eds. G. Wang, Q. Liu, Y. Yao and A. Skowron Chongqing, China (May 26-29, 2003), Proceedings, Lecture Notes in Computer Science, Vol. 2639 (Springer, 2003), pp. 476-483.
    • (2003) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 9th Int. Conf., RSFDGrC 2003 , vol.2639 , pp. 476-483
    • Zhou, Z.-H.1    Tang, W.2
  • 27
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu and W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137(1-2) (2002) 239-263.
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.