메뉴 건너뛰기




Volumn 385, Issue 5, 2009, Pages 1568-1577

Structure of West Nile Virus NS3 Protease: Ligand Stabilization of the Catalytic Conformation

Author keywords

crystal structure; NS3 protease; protease inhibitor; trypsin like serine protease; West Nile virus

Indexed keywords

HISTIDINE; LIGAND; MONTIRELIN; SERINE PROTEINASE;

EID: 58649113845     PISSN: 00222836     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmb.2008.11.026     Document Type: Article
Times cited : (128)

References (47)
  • 1
    • 0036407156 scopus 로고    scopus 로고
    • The molecular biology of West Nile virus: a new invader of the western hemisphere
    • Brinton M.A. The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu. Rev. Microbiol. 56 (2002) 371-402
    • (2002) Annu. Rev. Microbiol. , vol.56 , pp. 371-402
    • Brinton, M.A.1
  • 2
    • 0033579282 scopus 로고    scopus 로고
    • Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States
    • Lanciotti R.S., Roehrig J.T., Deubel V., Smith J., Parker M., Steele K., et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286 (1999) 2333-2337
    • (1999) Science , vol.286 , pp. 2333-2337
    • Lanciotti, R.S.1    Roehrig, J.T.2    Deubel, V.3    Smith, J.4    Parker, M.5    Steele, K.6
  • 3
    • 0025201350 scopus 로고
    • Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein
    • Chambers T.J., Weir R.C., Grakoui A., McCourt D.W., Bazan J.F., Fletterick R.J., and Rice C.M. Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc. Natl Acad. Sci. USA 87 (1990) 8898-8902
    • (1990) Proc. Natl Acad. Sci. USA , vol.87 , pp. 8898-8902
    • Chambers, T.J.1    Weir, R.C.2    Grakoui, A.3    McCourt, D.W.4    Bazan, J.F.5    Fletterick, R.J.6    Rice, C.M.7
  • 4
    • 10344248922 scopus 로고    scopus 로고
    • Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease
    • Nall T.A., Chappell K.J., Stoermer M.J., Fang N.X., Tyndall J.D., Young P.R., and Fairlie D.P. Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J. Biol. Chem. 279 (2004) 48535-48542
    • (2004) J. Biol. Chem. , vol.279 , pp. 48535-48542
    • Nall, T.A.1    Chappell, K.J.2    Stoermer, M.J.3    Fang, N.X.4    Tyndall, J.D.5    Young, P.R.6    Fairlie, D.P.7
  • 5
    • 33745025763 scopus 로고    scopus 로고
    • Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus
    • Erbel P., Schiering N., D'Arcy A., Renatus M., Kroemer M., Lim S.P., et al. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 13 (2006) 372-373
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 372-373
    • Erbel, P.1    Schiering, N.2    D'Arcy, A.3    Renatus, M.4    Kroemer, M.5    Lim, S.P.6
  • 6
    • 34247625945 scopus 로고    scopus 로고
    • Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold
    • Aleshin A.E., Shiryaev S.A., Strongin A.Y., and Liddington R.C. Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci. 16 (2007) 795-806
    • (2007) Protein Sci. , vol.16 , pp. 795-806
    • Aleshin, A.E.1    Shiryaev, S.A.2    Strongin, A.Y.3    Liddington, R.C.4
  • 7
    • 52449113528 scopus 로고    scopus 로고
    • Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity
    • Stoermer M.J., Chappell K.J., Liebscher S., Jensen C.M., Gan C.H., Gupta P.K., et al. Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. J. Med. Chem. 51 (2008) 5714-5721
    • (2008) J. Med. Chem. , vol.51 , pp. 5714-5721
    • Stoermer, M.J.1    Chappell, K.J.2    Liebscher, S.3    Jensen, C.M.4    Gan, C.H.5    Gupta, P.K.6
  • 8
    • 33847168016 scopus 로고    scopus 로고
    • Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3
    • Chappell K.J., Stoermer M.J., Fairlie D.P., and Young P.R. Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Protein Expression Purif. 53 (2007) 87-96
    • (2007) Protein Expression Purif. , vol.53 , pp. 87-96
    • Chappell, K.J.1    Stoermer, M.J.2    Fairlie, D.P.3    Young, P.R.4
  • 9
  • 11
    • 17244364283 scopus 로고    scopus 로고
    • Proteases universally recognize beta strands in their active sites
    • Tyndall J.D., Nall T., and Fairlie D.P. Proteases universally recognize beta strands in their active sites. Chem. Rev. 105 (2005) 973-999
    • (2005) Chem. Rev. , vol.105 , pp. 973-999
    • Tyndall, J.D.1    Nall, T.2    Fairlie, D.P.3
  • 12
    • 0029785147 scopus 로고    scopus 로고
    • Mapping the protein universe
    • Holm L., and Sander C. Mapping the protein universe. Science 273 (1996) 595-603
    • (1996) Science , vol.273 , pp. 595-603
    • Holm, L.1    Sander, C.2
  • 13
    • 33644824351 scopus 로고    scopus 로고
    • Crystal structure of the serine protease domain of Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket
    • Gayathri P., Satheshkumar P.S., Prasad K., Nair S., Savithri H.S., and Murthy M.R. Crystal structure of the serine protease domain of Sesbania mosaic virus polyprotein and mutational analysis of residues forming the S1-binding pocket. Virology 346 (2006) 440-451
    • (2006) Virology , vol.346 , pp. 440-451
    • Gayathri, P.1    Satheshkumar, P.S.2    Prasad, K.3    Nair, S.4    Savithri, H.S.5    Murthy, M.R.6
  • 14
    • 0024961747 scopus 로고
    • The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease
    • Tsunasawa S., Masaki T., Hirose M., Soejima M., and Sakiyama F. The primary structure and structural characteristics of Achromobacter lyticus protease I, a lysine-specific serine protease. J. Biol. Chem. 264 (1989) 3832-3839
    • (1989) J. Biol. Chem. , vol.264 , pp. 3832-3839
    • Tsunasawa, S.1    Masaki, T.2    Hirose, M.3    Soejima, M.4    Sakiyama, F.5
  • 15
    • 0028328469 scopus 로고
    • Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases
    • Allaire M., Chernaia M.M., Malcolm B.A., and James M.N. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369 (1994) 72-76
    • (1994) Nature , vol.369 , pp. 72-76
    • Allaire, M.1    Chernaia, M.M.2    Malcolm, B.A.3    James, M.N.4
  • 17
    • 0030585119 scopus 로고    scopus 로고
    • Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly
    • Lee S., Owen K.E., Choi H.K., Lee H., Lu G., Wengler G., et al. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 4 (1996) 531-541
    • (1996) Structure , vol.4 , pp. 531-541
    • Lee, S.1    Owen, K.E.2    Choi, H.K.3    Lee, H.4    Lu, G.5    Wengler, G.6
  • 18
  • 19
    • 0034641613 scopus 로고    scopus 로고
    • 1H NMR chemical shifts support (His) C(epsilon) 1⋯O{double bond, short}C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis
    • 1H NMR chemical shifts support (His) C(epsilon) 1⋯O{double bond, short}C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. Proc. Natl Acad. Sci. USA 97 (2000) 10371-10376
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 10371-10376
    • Ash, E.L.1    Sudmeier, J.L.2    Day, R.M.3    Vincent, M.4    Torchilin, E.V.5    Haddad, K.C.6
  • 20
    • 0022925238 scopus 로고
    • 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism
    • 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism. Biochemistry 25 (1986) 7751-7759
    • (1986) Biochemistry , vol.25 , pp. 7751-7759
    • Bachovchin, W.W.1
  • 21
    • 12844267295 scopus 로고
    • Imidazole and proton transfer in catalysis
    • Jencks W.P. Imidazole and proton transfer in catalysis. Biochem. J. 117 (1970) 50P
    • (1970) Biochem. J. , vol.117
    • Jencks, W.P.1
  • 22
    • 0017324044 scopus 로고
    • Serine proteases: structure and mechanism of catalysis
    • Kraut J. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46 (1977) 331-358
    • (1977) Annu. Rev. Biochem. , vol.46 , pp. 331-358
    • Kraut, J.1
  • 23
    • 0015490419 scopus 로고
    • On the role of hydrogen-bonding system in the catalysis by serine proteases
    • Polgar L. On the role of hydrogen-bonding system in the catalysis by serine proteases. Acta Biochim. Biophys. Acad. Sci. Hung. 7 (1972) 29-34
    • (1972) Acta Biochim. Biophys. Acad. Sci. Hung. , vol.7 , pp. 29-34
    • Polgar, L.1
  • 24
    • 33646489776 scopus 로고    scopus 로고
    • Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates
    • Radisky E.S., Lee J.M., Lu C.J., and Koshland Jr. D.E. Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. Proc. Natl Acad. Sci. USA 103 (2006) 6835-6840
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 6835-6840
    • Radisky, E.S.1    Lee, J.M.2    Lu, C.J.3    Koshland Jr., D.E.4
  • 25
    • 0016405364 scopus 로고
    • The mechanism of the aminolysis of acetate esters
    • Satterthwait A.C., and Jencks W.P. The mechanism of the aminolysis of acetate esters. J. Am. Chem. Soc. 96 (1974) 7018-7031
    • (1974) J. Am. Chem. Soc. , vol.96 , pp. 7018-7031
    • Satterthwait, A.C.1    Jencks, W.P.2
  • 26
    • 12844286056 scopus 로고    scopus 로고
    • Alpha-lytic protease can exist in two separately stable conformations with different His57 mobilities and catalytic activities
    • Haddad K.C., Sudmeier J.L., Bachovchin D.A., and Bachovchin W.W. Alpha-lytic protease can exist in two separately stable conformations with different His57 mobilities and catalytic activities. Proc. Natl Acad. Sci. USA 102 (2005) 1006-1011
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 1006-1011
    • Haddad, K.C.1    Sudmeier, J.L.2    Bachovchin, D.A.3    Bachovchin, W.W.4
  • 27
    • 0036882394 scopus 로고    scopus 로고
    • Serine protease mechanism and specificity
    • Hedstrom L. Serine protease mechanism and specificity. Chem. Rev. 102 (2002) 4501-4524
    • (2002) Chem. Rev. , vol.102 , pp. 4501-4524
    • Hedstrom, L.1
  • 28
    • 0037093656 scopus 로고    scopus 로고
    • Molecular dynamics simulations of the acyl-enzyme and the tetrahedral intermediate in the deacylation step of serine proteases
    • Topf M., Varnai P., Schofield C.J., and Richards W.G. Molecular dynamics simulations of the acyl-enzyme and the tetrahedral intermediate in the deacylation step of serine proteases. Proteins 47 (2002) 357-369
    • (2002) Proteins , vol.47 , pp. 357-369
    • Topf, M.1    Varnai, P.2    Schofield, C.J.3    Richards, W.G.4
  • 29
    • 84961983498 scopus 로고    scopus 로고
    • Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase
    • Topf M., and Richards W.G. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase. J. Am. Chem. Soc. 126 (2004) 14631-14641
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 14631-14641
    • Topf, M.1    Richards, W.G.2
  • 30
    • 0141732211 scopus 로고    scopus 로고
    • Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process
    • Ishida T., and Kato S. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. J. Am. Chem. Soc. 125 (2003) 12035-12048
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 12035-12048
    • Ishida, T.1    Kato, S.2
  • 33
    • 0030916103 scopus 로고    scopus 로고
    • The crystallographic structure of the subtilisin protease from Penicillium cyclopium
    • Koszelak S., Ng J.D., Day J., Ko T.P., Greenwood A., and McPherson A. The crystallographic structure of the subtilisin protease from Penicillium cyclopium. Biochemistry 36 (1997) 6597-6604
    • (1997) Biochemistry , vol.36 , pp. 6597-6604
    • Koszelak, S.1    Ng, J.D.2    Day, J.3    Ko, T.P.4    Greenwood, A.5    McPherson, A.6
  • 34
    • 0019205866 scopus 로고
    • Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 A resolution. A model for serine protease catalysis
    • James M.N., Sielecki A.R., Brayer G.D., Delbaere L.T., and Bauer C.A. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 A resolution. A model for serine protease catalysis. J. Mol. Biol. 144 (1980) 43-88
    • (1980) J. Mol. Biol. , vol.144 , pp. 43-88
    • James, M.N.1    Sielecki, A.R.2    Brayer, G.D.3    Delbaere, L.T.4    Bauer, C.A.5
  • 35
    • 0026093195 scopus 로고
    • Crystal structures of alpha-lytic protease complexes with irreversibly bound phosphonate esters
    • Bone R., Sampson N.S., Bartlett P.A., and Agard D.A. Crystal structures of alpha-lytic protease complexes with irreversibly bound phosphonate esters. Biochemistry 30 (1991) 2263-2272
    • (1991) Biochemistry , vol.30 , pp. 2263-2272
    • Bone, R.1    Sampson, N.S.2    Bartlett, P.A.3    Agard, D.A.4
  • 37
    • 0014432781 scopus 로고
    • Solvent content of protein crystals
    • Matthews B.W. Solvent content of protein crystals. J. Mol. Biol. 33 (1968) 491-497
    • (1968) J. Mol. Biol. , vol.33 , pp. 491-497
    • Matthews, B.W.1
  • 38
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski Z.M., and W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276 (1997) 307-326
    • (1997) Methods Enzymol. , vol.276 , pp. 307-326
    • Otwinowski, Z.M.1
  • 40
    • 0035788107 scopus 로고    scopus 로고
    • Pushing the boundaries of molecular replacement with maximum likelihood
    • Read R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. Sect. D 57 (2001) 1373-1382
    • (2001) Acta Crystallogr. Sect. D , vol.57 , pp. 1373-1382
    • Read, R.J.1
  • 42
    • 0028103275 scopus 로고
    • The CCP4 suite: programs for protein crystallography
    • Collaborative Computational Project, Number 4
    • Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D 50 (1994) 760-763
    • (1994) Acta Crystallogr. Sect. D , vol.50 , pp. 760-763
  • 44
    • 13244281317 scopus 로고    scopus 로고
    • Coot: model-building tools for molecular graphics
    • Emsley P., and Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D 60 (2004) 2126-2132
    • (2004) Acta Crystallogr. Sect. D , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.