메뉴 건너뛰기




Volumn 1677, Issue 1-3, 2004, Pages 87-99

Transcription through chromatin: Understanding a complex FACT

Author keywords

Chromatin; FACT; Transcription

Indexed keywords

CHROMOSOME PROTEIN; DIMER; DNA; GENOMIC DNA; HISTONE; RNA POLYMERASE II;

EID: 1542298303     PISSN: 01674781     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.bbaexp.2003.09.017     Document Type: Review
Times cited : (62)

References (126)
  • 1
    • 0029846871 scopus 로고    scopus 로고
    • The general transcription factors of RNA polymerase II
    • Orphanides G., Lagrange T., Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev. 10:1996;2657-2683.
    • (1996) Genes Dev. , vol.10 , pp. 2657-2683
    • Orphanides, G.1    Lagrange, T.2    Reinberg, D.3
  • 2
    • 0030249381 scopus 로고    scopus 로고
    • The role of general initiation factors in transcription by RNA polymerase II
    • Roeder R.G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:1996;327-335.
    • (1996) Trends Biochem. Sci. , vol.21 , pp. 327-335
    • Roeder, R.G.1
  • 3
    • 0037154984 scopus 로고    scopus 로고
    • The RNA polymerase II machinery: Structure illuminates function
    • Woychik N.A., Hampsey M. The RNA polymerase II machinery: structure illuminates function. Cell. 108:2002;453-463.
    • (2002) Cell , vol.108 , pp. 453-463
    • Woychik, N.A.1    Hampsey, M.2
  • 4
    • 0022447855 scopus 로고
    • Gene regulation by proteins acting nearby and at a distance
    • Ptashne M. Gene regulation by proteins acting nearby and at a distance. Nature. 322:1986;697-701.
    • (1986) Nature , vol.322 , pp. 697-701
    • Ptashne, M.1
  • 5
    • 0028347674 scopus 로고
    • An RNA polymerase II holoenzyme responsive to activators
    • Koleske A.J., Young R.A. An RNA polymerase II holoenzyme responsive to activators. Nature. 368:1994;466-469.
    • (1994) Nature , vol.368 , pp. 466-469
    • Koleske, A.J.1    Young, R.A.2
  • 6
    • 0028840419 scopus 로고
    • Transcriptional coactivators in yeast and beyond
    • Guarente L. Transcriptional coactivators in yeast and beyond. Trends Biochem. Sci. 20:1995;517-521.
    • (1995) Trends Biochem. Sci. , vol.20 , pp. 517-521
    • Guarente, L.1
  • 7
    • 0029972551 scopus 로고    scopus 로고
    • Contacts in context: Promoter specificity and macromolecular interactions in transcription
    • Goodrich J.A., Cutler G., Tjian R. Contacts in context: promoter specificity and macromolecular interactions in transcription. Cell. 84:1996;825-830.
    • (1996) Cell , vol.84 , pp. 825-830
    • Goodrich, J.A.1    Cutler, G.2    Tjian, R.3
  • 8
    • 0021268344 scopus 로고
    • Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates
    • Ucker D.S., Yamamoto K.R. Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates. J. Biol. Chem. 259:1984;7416-7420.
    • (1984) J. Biol. Chem. , vol.259 , pp. 7416-7420
    • Ucker, D.S.1    Yamamoto, K.R.2
  • 10
    • 0037154967 scopus 로고    scopus 로고
    • Integrating mRNA processing with transcription
    • Proudfoot N.J., Furger A., Dye M.J. Integrating mRNA processing with transcription. Cell. 108:2002;501-512.
    • (2002) Cell , vol.108 , pp. 501-512
    • Proudfoot, N.J.1    Furger, A.2    Dye, M.J.3
  • 11
    • 0036089388 scopus 로고    scopus 로고
    • Conformational dynamics of the chromatin fiber in solution: Determinants, mechanisms, and functions
    • Hansen J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31:2002;361-392.
    • (2002) Annu. Rev. Biophys. Biomol. Struct. , vol.31 , pp. 361-392
    • Hansen, J.C.1
  • 12
    • 0004142945 scopus 로고    scopus 로고
    • Chromatin: Structure and Function
    • San Diego: Academic Press
    • Wolffe A.P. Chromatin: Structure and Function. 3rd ed. 1998;Academic Press, San Diego.
    • (1998) 3rd Ed.
    • Wolffe, A.P.1
  • 13
    • 0022483705 scopus 로고
    • The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro
    • Knezetic J.A., Luse D.S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell. 45:1986;95-104.
    • (1986) Cell , vol.45 , pp. 95-104
    • Knezetic, J.A.1    Luse, D.S.2
  • 14
    • 0023661185 scopus 로고
    • Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II
    • Workman J.L., Roeder R.G. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell. 51:1987;613-622.
    • (1987) Cell , vol.51 , pp. 613-622
    • Workman, J.L.1    Roeder, R.G.2
  • 15
    • 0026629273 scopus 로고
    • Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates
    • Izban M.G., Luse D.S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267:1992;13647-13655.
    • (1992) J. Biol. Chem. , vol.267 , pp. 13647-13655
    • Izban, M.G.1    Luse, D.S.2
  • 16
    • 0026599021 scopus 로고
    • Chromatin as an essential part of the transcriptional mechanism
    • Felsenfeld G. Chromatin as an essential part of the transcriptional mechanism. Nature. 355:1992;219-224.
    • (1992) Nature , vol.355 , pp. 219-224
    • Felsenfeld, G.1
  • 17
    • 0031707751 scopus 로고    scopus 로고
    • Alteration of nucleosome structure as a mechanism of transcriptional regulation
    • Workman J.L., Kingston R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Ann. Rev. Biochem. 67:1998;545-579.
    • (1998) Ann. Rev. Biochem. , vol.67 , pp. 545-579
    • Workman, J.L.1    Kingston, R.E.2
  • 18
    • 0034727102 scopus 로고    scopus 로고
    • RNA polymerase II elongation through chromatin
    • Orphanides G., Reinberg D. RNA polymerase II elongation through chromatin. Nature. 407:2000;471-475.
    • (2000) Nature , vol.407 , pp. 471-475
    • Orphanides, G.1    Reinberg, D.2
  • 19
    • 0017142124 scopus 로고
    • Chromosomal subunits in active genes have an altered conformation
    • Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 193:1976;848-856.
    • (1976) Science , vol.193 , pp. 848-856
    • Weintraub, H.1    Groudine, M.2
  • 20
    • 0018458970 scopus 로고
    • The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence
    • Wu C., Bingham P.M., Livak K.J., Holmgren R., Elgin S.C. The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell. 16:1979;797-806.
    • (1979) Cell , vol.16 , pp. 797-806
    • Wu, C.1    Bingham, P.M.2    Livak, K.J.3    Holmgren, R.4    Elgin, S.C.5
  • 21
    • 0018359588 scopus 로고
    • The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity
    • Wu C., Wong Y.C., Elgin S.C. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell. 16:1979;807-814.
    • (1979) Cell , vol.16 , pp. 807-814
    • Wu, C.1    Wong, Y.C.2    Elgin, S.C.3
  • 22
    • 0019303186 scopus 로고
    • The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I
    • Wu C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 286:1980;854-860.
    • (1980) Nature , vol.286 , pp. 854-860
    • Wu, C.1
  • 23
    • 0026713778 scopus 로고
    • What happens to nucleosomes during transcription?
    • van Holde K.E., Lohr D.E., Robert C. What happens to nucleosomes during transcription? J. Biol. Chem. 267:1992;2837-2840.
    • (1992) J. Biol. Chem. , vol.267 , pp. 2837-2840
    • Van Holde, K.E.1    Lohr, D.E.2    Robert, C.3
  • 24
    • 0025837183 scopus 로고
    • The nucleosomal core histone octamer at 3.1 a resolution: A tripartite protein assembly and a left-handed superhelix
    • Arents G., Burlingame R.W., Wang B.C., Love W.E., Moudrianakis E.N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. U. S. A. 88:1991;10148-10152.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 10148-10152
    • Arents, G.1    Burlingame, R.W.2    Wang, B.C.3    Love, W.E.4    Moudrianakis, E.N.5
  • 25
    • 0029143194 scopus 로고
    • Transcription factor-mediated chromatin remodelling: Mechanisms and models
    • Varga-Weisz P.D., Becker P.B. Transcription factor-mediated chromatin remodelling: mechanisms and models. FEBS Lett. 369:1995;118-121.
    • (1995) FEBS Lett. , vol.369 , pp. 118-121
    • Varga-Weisz, P.D.1    Becker, P.B.2
  • 26
    • 0020554124 scopus 로고
    • Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin
    • Prior C.P., Cantor C.R., Johnson E.M., Littau V.C., Allfrey V.G. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell. 34:1983;1033-1042.
    • (1983) Cell , vol.34 , pp. 1033-1042
    • Prior, C.P.1    Cantor, C.R.2    Johnson, E.M.3    Littau, V.C.4    Allfrey, V.G.5
  • 27
    • 0025273784 scopus 로고
    • Reversible and irreversible changes in nucleosome structure along the c-fos and c-myc oncogenes following inhibition of transcription
    • Chen T.A., Sterner R., Cozzolino A., Allfrey V.G. Reversible and irreversible changes in nucleosome structure along the c-fos and c-myc oncogenes following inhibition of transcription. J. Mol. Biol. 212:1990;481-493.
    • (1990) J. Mol. Biol. , vol.212 , pp. 481-493
    • Chen, T.A.1    Sterner, R.2    Cozzolino, A.3    Allfrey, V.G.4
  • 28
    • 0025264388 scopus 로고
    • Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast
    • Walker J., Chen T.A., Sterner R., Berger M., Winston F., Allfrey V.G. Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J. Biol. Chem. 265:1990;5736-5746.
    • (1990) J. Biol. Chem. , vol.265 , pp. 5736-5746
    • Walker, J.1    Chen, T.A.2    Sterner, R.3    Berger, M.4    Winston, F.5    Allfrey, V.G.6
  • 31
    • 0026036393 scopus 로고
    • Transcription-induced nucleosome 'splitting': An underlying structure for DNase I sensitive chromatin
    • Lee M.S., Garrard W.T. Transcription-induced nucleosome 'splitting': an underlying structure for DNase I sensitive chromatin. EMBO J. 10:1991;607-615.
    • (1991) EMBO J. , vol.10 , pp. 607-615
    • Lee, M.S.1    Garrard, W.T.2
  • 32
    • 0025836653 scopus 로고
    • Nucleosome positioning is determined by the (H3-H4)2 tetramer
    • Dong F., van Holde K.E. Nucleosome positioning is determined by the (H3-H4)2 tetramer. Proc. Natl. Acad. Sci. U. S. A. 88:1991;10596-10600.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 10596-10600
    • Dong, F.1    Van Holde, K.E.2
  • 33
    • 0021271338 scopus 로고
    • Chromatin structure of hsp 70 genes, activated by heat shock: Selective removal of histones from the coding region and their absence from the 5′ region
    • Karpov V.L., Preobrazhenskaya O.V., Mirzabekov A.D. Chromatin structure of hsp 70 genes, activated by heat shock: selective removal of histones from the coding region and their absence from the 5′ region. Cell. 36:1984;423-431.
    • (1984) Cell , vol.36 , pp. 423-431
    • Karpov, V.L.1    Preobrazhenskaya, O.V.2    Mirzabekov, A.D.3
  • 35
    • 0020660260 scopus 로고
    • Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes
    • Baer B.W., Rhodes D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature. 301:1983;482-488.
    • (1983) Nature , vol.301 , pp. 482-488
    • Baer, B.W.1    Rhodes, D.2
  • 36
    • 0023655917 scopus 로고
    • Interaction with RNA polymerase of nucleosomal cores lacking one H2A.H2B dimer
    • Gonzalez P.J., Martinez C., Palacian E. Interaction with RNA polymerase of nucleosomal cores lacking one H2A.H2B dimer. J. Biol. Chem. 262:1987;11280-11283.
    • (1987) J. Biol. Chem. , vol.262 , pp. 11280-11283
    • Gonzalez, P.J.1    Martinez, C.2    Palacian, E.3
  • 37
    • 0024465794 scopus 로고
    • Interaction of RNA polymerase II with structurally altered nucleosomal particles. Transcription is facilitated by loss of one H2A.H2B dimer
    • Gonzalez P.J., Palacian E. Interaction of RNA polymerase II with structurally altered nucleosomal particles. Transcription is facilitated by loss of one H2A.H2B dimer. J. Biol. Chem. 264:1989;18457-18462.
    • (1989) J. Biol. Chem. , vol.264 , pp. 18457-18462
    • Gonzalez, P.J.1    Palacian, E.2
  • 38
    • 0020490906 scopus 로고
    • Association of newly synthesized histones with replicating and nonreplicating regions of chromatin
    • Annunziato A.T., Schindler R.K., Riggs M.G., Seale R.L. Association of newly synthesized histones with replicating and nonreplicating regions of chromatin. J. Biol. Chem. 257:1982;8507-8515.
    • (1982) J. Biol. Chem. , vol.257 , pp. 8507-8515
    • Annunziato, A.T.1    Schindler, R.K.2    Riggs, M.G.3    Seale, R.L.4
  • 39
    • 0035954427 scopus 로고    scopus 로고
    • Kinetics of core histones in living human cells: Little exchange of H3 and H4 and some rapid exchange of H2B
    • Kimura H., Cook P.R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153:2001;1341-1353.
    • (2001) J. Cell Biol. , vol.153 , pp. 1341-1353
    • Kimura, H.1    Cook, P.R.2
  • 40
    • 0025134076 scopus 로고
    • In vivo studies on the dynamics of histone-DNA interaction: Evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both
    • Jackson V. In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry. 29:1990;719-731.
    • (1990) Biochemistry , vol.29 , pp. 719-731
    • Jackson, V.1
  • 42
    • 0034721645 scopus 로고    scopus 로고
    • Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes
    • Santisteban M.S., Kalashnikova T., Smith M.M. Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell. 103:2000;411-422.
    • (2000) Cell , vol.103 , pp. 411-422
    • Santisteban, M.S.1    Kalashnikova, T.2    Smith, M.M.3
  • 43
    • 0033664380 scopus 로고    scopus 로고
    • Crystal structure of a nucleosome core particle containing the variant histone H2A.Z
    • Suto R.K., Clarkson M.J., Tremethick D.J., Luger K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat. Struct. Biol. 7:2000;1121-1124.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 1121-1124
    • Suto, R.K.1    Clarkson, M.J.2    Tremethick, D.J.3    Luger, K.4
  • 44
    • 0035834777 scopus 로고    scopus 로고
    • Characterization of the stability and folding of H2A.Z chromatin particles: Implications for transcriptional activation
    • Abbott D.W., Ivanova V.S., Wang X., Bonner W.M., Ausio J. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J. Biol. Chem. 276:2001;41945- 41949.
    • (2001) J. Biol. Chem. , vol.276 , pp. 41945-41949
    • Abbott, D.W.1    Ivanova, V.S.2    Wang, X.3    Bonner, W.M.4    Ausio, J.5
  • 45
    • 0030999604 scopus 로고    scopus 로고
    • Histone octamer function in vivo: Mutations in the dimer-tetramer interfaces disrupt both gene activation and repression
    • Santisteban M.S., Arents G., Moudrianakis E.N., Smith M.M. Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 16:1997;2493-2506.
    • (1997) EMBO J. , vol.16 , pp. 2493-2506
    • Santisteban, M.S.1    Arents, G.2    Moudrianakis, E.N.3    Smith, M.M.4
  • 47
    • 0027068143 scopus 로고
    • Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure
    • Hirschhorn J.N., Brown S.A., Clark C.D., Winston F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:1992;2288-2298.
    • (1992) Genes Dev. , vol.6 , pp. 2288-2298
    • Hirschhorn, J.N.1    Brown, S.A.2    Clark, C.D.3    Winston, F.4
  • 48
    • 0024277923 scopus 로고
    • The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae
    • Norris D., Dunn B., Osley M.A. The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. Science. 242:1988;759-761.
    • (1988) Science , vol.242 , pp. 759-761
    • Norris, D.1    Dunn, B.2    Osley, M.A.3
  • 49
    • 0028288557 scopus 로고
    • A role for histones H2A/H2B in chromatin folding and transcriptional repression
    • Hansen J.C., Wolffe A.P. A role for histones H2A/H2B in chromatin folding and transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 91:1994;2339-2343.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 2339-2343
    • Hansen, J.C.1    Wolffe, A.P.2
  • 50
    • 0023663417 scopus 로고
    • Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones
    • Lorch Y., LaPointe J.W., Kornberg R.D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell. 49:1987;203-210.
    • (1987) Cell , vol.49 , pp. 203-210
    • Lorch, Y.1    Lapointe, J.W.2    Kornberg, R.D.3
  • 51
    • 0023667021 scopus 로고
    • A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it
    • Losa R., Brown D.D. A bacteriophage RNA polymerase transcribes in vitro through a nucleosome core without displacing it. Cell. 50:1987;801-808.
    • (1987) Cell , vol.50 , pp. 801-808
    • Losa, R.1    Brown, D.D.2
  • 52
    • 0024276517 scopus 로고
    • On the displacement of histones from DNA by transcription
    • Lorch Y., LaPointe J.W., Kornberg R.D. On the displacement of histones from DNA by transcription. Cell. 55:1988;743-744.
    • (1988) Cell , vol.55 , pp. 743-744
    • Lorch, Y.1    Lapointe, J.W.2    Kornberg, R.D.3
  • 54
    • 0028125847 scopus 로고
    • A histone octamer can step around a transcribing polymerase without leaving the template
    • Studitsky V.M., Clark D.J., Felsenfeld G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell. 76:1994;371-382.
    • (1994) Cell , vol.76 , pp. 371-382
    • Studitsky, V.M.1    Clark, D.J.2    Felsenfeld, G.3
  • 55
    • 0033197561 scopus 로고    scopus 로고
    • The nature of the nucleosomal barrier to transcription: Direct observation of paused intermediates by electron cryomicroscopy
    • Bednar J., Studitsky V.M., Grigoryev S.A., Felsenfeld G., Woodcock C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy. Mol. Cell. 4:1999;377-386.
    • (1999) Mol. Cell , vol.4 , pp. 377-386
    • Bednar, J.1    Studitsky, V.M.2    Grigoryev, S.A.3    Felsenfeld, G.4    Woodcock, C.L.5
  • 56
    • 0031451329 scopus 로고    scopus 로고
    • Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase
    • Studitsky V.M., Kassavetis G.A., Geiduschek E.P., Felsenfeld G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science. 278:1997;1960-1963.
    • (1997) Science , vol.278 , pp. 1960-1963
    • Studitsky, V.M.1    Kassavetis, G.A.2    Geiduschek, E.P.3    Felsenfeld, G.4
  • 57
    • 0035800808 scopus 로고    scopus 로고
    • Facilitated transcription through the nucleosome at high ionic strength occurs via a histone octamer transfer mechanism
    • Walter W., Studitsky V.M. Facilitated transcription through the nucleosome at high ionic strength occurs via a histone octamer transfer mechanism. J. Biol. Chem. 276:2001;29104-29110.
    • (2001) J. Biol. Chem. , vol.276 , pp. 29104-29110
    • Walter, W.1    Studitsky, V.M.2
  • 58
    • 0033522911 scopus 로고    scopus 로고
    • RNA polymerase-specific nucleosome disruption by transcription in vivo
    • Sathyanarayana U.G., Freeman L.A., Lee M.S., Garrard W.T. RNA polymerase-specific nucleosome disruption by transcription in vivo. J. Biol. Chem. 274:1999;16431-16436.
    • (1999) J. Biol. Chem. , vol.274 , pp. 16431-16436
    • Sathyanarayana, U.G.1    Freeman, L.A.2    Lee, M.S.3    Garrard, W.T.4
  • 59
    • 0034051171 scopus 로고    scopus 로고
    • The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex
    • Kireeva M.L., Komissarova N., Waugh D.S., Kashlev M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275:2000;6530-6536.
    • (2000) J. Biol. Chem. , vol.275 , pp. 6530-6536
    • Kireeva, M.L.1    Komissarova, N.2    Waugh, D.S.3    Kashlev, M.4
  • 60
    • 0036203807 scopus 로고    scopus 로고
    • Nucleosome remodeling induced by RNA polymerase II: Loss of the H2A/H2B dimer during transcription
    • Kireeva M.L., Walter W., Tchernajenko V., Bondarenko V., Kashlev M., Studitsky V.M. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell. 9:2002;541-552.
    • (2002) Mol. Cell , vol.9 , pp. 541-552
    • Kireeva, M.L.1    Walter, W.2    Tchernajenko, V.3    Bondarenko, V.4    Kashlev, M.5    Studitsky, V.M.6
  • 61
    • 0027275194 scopus 로고
    • Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly
    • Kamakaka R.T., Bulger M., Kadonaga J.T. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7:1993;1779-1795.
    • (1993) Genes Dev. , vol.7 , pp. 1779-1795
    • Kamakaka, R.T.1    Bulger, M.2    Kadonaga, J.T.3
  • 62
    • 0029759928 scopus 로고    scopus 로고
    • Activator-dependent regulation of transcriptional pausing on nucleosomal templates
    • Brown S.A., Imbalzano A.N., Kingston R.E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10:1996;1479-1490.
    • (1996) Genes Dev. , vol.10 , pp. 1479-1490
    • Brown, S.A.1    Imbalzano, A.N.2    Kingston, R.E.3
  • 63
    • 0028467446 scopus 로고
    • Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex
    • Cote J., Quinn J., Workman J.L., Peterson C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science. 265:1994;53-60.
    • (1994) Science , vol.265 , pp. 53-60
    • Cote, J.1    Quinn, J.2    Workman, J.L.3    Peterson, C.L.4
  • 64
    • 0028598182 scopus 로고
    • ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates
    • Pazin M.J., Kamakaka R.T., Kadonaga J.T. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science. 266:1994;2007-2011.
    • (1994) Science , vol.266 , pp. 2007-2011
    • Pazin, M.J.1    Kamakaka, R.T.2    Kadonaga, J.T.3
  • 65
    • 0028966257 scopus 로고
    • Experimental analysis of chromatin function in transcription control
    • Owen-Hughes T., Workman J.L. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene Expr. 4:1994;403-441.
    • (1994) Crit. Rev. Eukaryot. Gene Expr. , vol.4 , pp. 403-441
    • Owen-Hughes, T.1    Workman, J.L.2
  • 66
    • 0032498273 scopus 로고    scopus 로고
    • FACT, a factor that facilitates transcript elongation through nucleosomes
    • Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 92:1998;105-116.
    • (1998) Cell , vol.92 , pp. 105-116
    • Orphanides, G.1    Leroy, G.2    Chang, C.H.3    Luse, D.S.4    Reinberg, D.5
  • 67
    • 0027186443 scopus 로고
    • DNA topoisomerase I is involved in both repression and activation of transcription
    • Merino A., Madden K.R., Lane W.S., Champoux J.J., Reinberg D. DNA topoisomerase I is involved in both repression and activation of transcription. Nature. 365:1993;227-232.
    • (1993) Nature , vol.365 , pp. 227-232
    • Merino, A.1    Madden, K.R.2    Lane, W.S.3    Champoux, J.J.4    Reinberg, D.5
  • 68
    • 0033566129 scopus 로고    scopus 로고
    • The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
    • Orphanides G., Wu W.H., Lane W.S., Hampsey M., Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature. 400:1999;284-288.
    • (1999) Nature , vol.400 , pp. 284-288
    • Orphanides, G.1    Wu, W.H.2    Lane, W.S.3    Hampsey, M.4    Reinberg, D.5
  • 69
    • 0025942523 scopus 로고
    • Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae
    • Malone E.A., Clark C.D., Chiang A., Winston F. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:1991;5710-5717.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 5710-5717
    • Malone, E.A.1    Clark, C.D.2    Chiang, A.3    Winston, F.4
  • 70
    • 0025999843 scopus 로고
    • CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus
    • Rowley A., Singer R.A., Johnston G.C. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11:1991;5718-5726.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 5718-5726
    • Rowley, A.1    Singer, R.A.2    Johnston, G.C.3
  • 71
    • 0026550682 scopus 로고
    • Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin
    • Bruhn S.L., Pil P.M., Essigmann J.M., Housman D.E., Lippard S.J. Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc. Natl. Acad. Sci. U. S. A. 89:1992;2307-2311.
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 2307-2311
    • Bruhn, S.L.1    Pil, P.M.2    Essigmann, J.M.3    Housman, D.E.4    Lippard, S.J.5
  • 72
    • 0030920334 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein
    • Wittmeyer J., Formosa T. The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol. Cell. Biol. 17:1997;4178-4190.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4178-4190
    • Wittmeyer, J.1    Formosa, T.2
  • 74
    • 0027483906 scopus 로고
    • The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing
    • Xu Q., Johnston G.C., Singer R.A. The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol. Cell. Biol. 13:1993;7553-7565.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 7553-7565
    • Xu, Q.1    Johnston, G.C.2    Singer, R.A.3
  • 75
    • 0028856102 scopus 로고
    • Sug1 modulates yeast transcription activation by Cdc68
    • Xu Q., Singer R.A., Johnston G.C. Sug1 modulates yeast transcription activation by Cdc68. Mol. Cell. Biol. 15:1995;6025-6035.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 6025-6035
    • Xu, Q.1    Singer, R.A.2    Johnston, G.C.3
  • 76
    • 0028143038 scopus 로고
    • Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae
    • Lycan D., Mikesell G., Bunger M., Breeden L. Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:1994;7455-7465.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 7455-7465
    • Lycan, D.1    Mikesell, G.2    Bunger, M.3    Breeden, L.4
  • 77
    • 0032555659 scopus 로고    scopus 로고
    • Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression
    • Brewster N.K., Johnston G.C., Singer R.A. Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J. Biol. Chem. 273:1998;21972-21979.
    • (1998) J. Biol. Chem. , vol.273 , pp. 21972-21979
    • Brewster, N.K.1    Johnston, G.C.2    Singer, R.A.3
  • 78
    • 0031760928 scopus 로고    scopus 로고
    • The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain
    • Evans D.R., Brewster N.K., Xu Q., Rowley A., Altheim B.A., Johnston G.C., Singer R.A. The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain. Genetics. 150:1998;1393-1405.
    • (1998) Genetics , vol.150 , pp. 1393-1405
    • Evans, D.R.1    Brewster, N.K.2    Xu, Q.3    Rowley, A.4    Altheim, B.A.5    Johnston, G.C.6    Singer, R.A.7
  • 79
    • 0034657420 scopus 로고    scopus 로고
    • The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex
    • John S., Howe L., Tafrov S.T., Grant P.A., Sternglanz R., Workman J.L. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 14:2000;1196-1208.
    • (2000) Genes Dev. , vol.14 , pp. 1196-1208
    • John, S.1    Howe, L.2    Tafrov, S.T.3    Grant, P.A.4    Sternglanz, R.5    Workman, J.L.6
  • 80
    • 0035796454 scopus 로고    scopus 로고
    • Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN
    • Formosa T., Eriksson P., Wittmeyer J., Ginn J., Yu Y., Stillman D.J. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 20:2001;3506-3517.
    • (2001) EMBO J. , vol.20 , pp. 3506-3517
    • Formosa, T.1    Eriksson, P.2    Wittmeyer, J.3    Ginn, J.4    Yu, Y.5    Stillman, D.J.6
  • 81
    • 0026641776 scopus 로고
    • Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection
    • Winston F., Carlson M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:1992;387-391.
    • (1992) Trends Genet. , vol.8 , pp. 387-391
    • Winston, F.1    Carlson, M.2
  • 82
    • 0035281548 scopus 로고    scopus 로고
    • HMG1 and 2, and related 'architectural' DNA-binding proteins
    • Thomas J.O., Travers A.A. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem. Sci. 26:2001;167-174.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 167-174
    • Thomas, J.O.1    Travers, A.A.2
  • 83
    • 0025740891 scopus 로고
    • HMG1-related DNA-binding protein isolated with V-(D)-J recombination signal probes
    • Shirakata M., Huppi K., Usuda S., Okazaki Y., Yoshida K., Sakano H. HMG1-related DNA-binding protein isolated with V-(D)-J recombination signal probes. Mol. Cell. Biol. 11:1991;4528-4536.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4528-4536
    • Shirakata, M.1    Huppi, K.2    Usuda, S.3    Okazaki, Y.4    Yoshida, K.5    Sakano, H.6
  • 84
    • 0030358586 scopus 로고    scopus 로고
    • High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function
    • Bustin M., Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54:1996;35-100.
    • (1996) Prog. Nucleic Acid Res. Mol. Biol. , vol.54 , pp. 35-100
    • Bustin, M.1    Reeves, R.2
  • 86
    • 0037241069 scopus 로고    scopus 로고
    • Changing the DNA landscape: Putting a SPN on chromatin
    • Formosa T. Changing the DNA landscape: putting a SPN on chromatin. Curr. Top. Microbiol Immunol. 274:2003;171-201.
    • (2003) Curr. Top. Microbiol Immunol. , vol.274 , pp. 171-201
    • Formosa, T.1
  • 87
    • 0034764781 scopus 로고    scopus 로고
    • Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae
    • Lindstrom D.L., Hartzog G.A. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Genetics. 159:2001;487-497.
    • (2001) Genetics , vol.159 , pp. 487-497
    • Lindstrom, D.L.1    Hartzog, G.A.2
  • 91
    • 0345698603 scopus 로고    scopus 로고
    • Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
    • Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., Johnson A.D., Hartzog G.A., Arndt K.M. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22:2003;1846-1856.
    • (2003) EMBO J. , vol.22 , pp. 1846-1856
    • Simic, R.1    Lindstrom, D.L.2    Tran, H.G.3    Roinick, K.L.4    Costa, P.J.5    Johnson, A.D.6    Hartzog, G.A.7    Arndt, K.M.8
  • 92
    • 0028948315 scopus 로고
    • DNA-binding and chromatin localization properties of CHD1
    • Stokes D.G., Perry R.P. DNA-binding and chromatin localization properties of CHD1. Mol. Cell. Biol. 15:1995;2745-2753.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2745-2753
    • Stokes, D.G.1    Perry, R.P.2
  • 93
    • 0029901861 scopus 로고    scopus 로고
    • CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes
    • Stokes D.G., Tartof K.D., Perry R.P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. U. S. A. 93:1996;7137-7142.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 7137-7142
    • Stokes, D.G.1    Tartof, K.D.2    Perry, R.P.3
  • 94
    • 0032961892 scopus 로고    scopus 로고
    • CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin
    • Kelley D.E., Stokes D.G., Perry R.P. CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma. 108:1999;10-25.
    • (1999) Chromosoma , vol.108 , pp. 10-25
    • Kelley, D.E.1    Stokes, D.G.2    Perry, R.P.3
  • 96
    • 0034667949 scopus 로고    scopus 로고
    • High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: Roles in promoter proximal pausing and transcription elongation
    • Andrulis E.D., Guzman E., Doring P., Werner J., Lis J.T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14:2000;2635-2649.
    • (2000) Genes Dev. , vol.14 , pp. 2635-2649
    • Andrulis, E.D.1    Guzman, E.2    Doring, P.3    Werner, J.4    Lis, J.T.5
  • 97
    • 0034667805 scopus 로고    scopus 로고
    • Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
    • Kaplan C.D., Morris J.R., Wu C., Winston F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14:2000;2623-2634.
    • (2000) Genes Dev. , vol.14 , pp. 2623-2634
    • Kaplan, C.D.1    Morris, J.R.2    Wu, C.3    Winston, F.4
  • 98
    • 0034057976 scopus 로고    scopus 로고
    • Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68
    • Kang S.W., Kuzuhara T., Horikoshi M. Functional interaction of general transcription initiation factor TFIIE with general chromatin factor SPT16/CDC68. Genes Cells. 5:2000;251-263.
    • (2000) Genes Cells , vol.5 , pp. 251-263
    • Kang, S.W.1    Kuzuhara, T.2    Horikoshi, M.3
  • 99
    • 0027171474 scopus 로고
    • A Drosophila single-strand DNA/RNA-binding factor contains a high-mobility-group box and is enriched in the nucleolus
    • Hsu T., King D.L., LaBonne C., Kafatos F.C. A Drosophila single-strand DNA/RNA-binding factor contains a high-mobility-group box and is enriched in the nucleolus. Proc. Natl. Acad. Sci. U. S. A. 90:1993;6488-6492.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 6488-6492
    • Hsu, T.1    King, D.L.2    Labonne, C.3    Kafatos, F.C.4
  • 100
    • 0041828953 scopus 로고    scopus 로고
    • Evidence that transcription elongation factors repress transcription initiation from cryptic promoters
    • Kaplan C.D., Laprade L., Winston F. Evidence that transcription elongation factors repress transcription initiation from cryptic promoters. Science. 301:2003;1096-1099.
    • (2003) Science , vol.301 , pp. 1096-1099
    • Kaplan, C.D.1    Laprade, L.2    Winston, F.3
  • 101
    • 0029007043 scopus 로고
    • Fate of linear and supercoiled multinucleosomic templates during transcription
    • ten Heggeler-Bordier B., Schild-Poulter C., Chapel S., Wahli W. Fate of linear and supercoiled multinucleosomic templates during transcription. EMBO J. 14:1995;2561-2569.
    • (1995) EMBO J. , vol.14 , pp. 2561-2569
    • Ten Heggeler-Bordier, B.1    Schild-Poulter, C.2    Chapel, S.3    Wahli, W.4
  • 103
    • 0036964090 scopus 로고    scopus 로고
    • Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway. Polymerase passage may degrade chromatin structure
    • Formosa T., Ruone S., Adams M.D., Olsen A.E., Eriksson P., Yu Y., Rhoades A.R., Kaufman P.D., Stillman D.J. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway. Polymerase passage may degrade chromatin structure. Genetics. 162:2002;1557-1571.
    • (2002) Genetics , vol.162 , pp. 1557-1571
    • Formosa, T.1    Ruone, S.2    Adams, M.D.3    Olsen, A.E.4    Eriksson, P.5    Yu, Y.6    Rhoades, A.R.7    Kaufman, P.D.8    Stillman, D.J.9
  • 104
    • 0025863511 scopus 로고
    • The regulation of histone synthesis in the cell cycle
    • Osley M.A. The regulation of histone synthesis in the cell cycle. Ann. Rev. Biochem. 60:1991;827-861.
    • (1991) Ann. Rev. Biochem. , vol.60 , pp. 827-861
    • Osley, M.A.1
  • 105
    • 0031886352 scopus 로고    scopus 로고
    • Functional dissection of yeast hir1p, a WD repeat-containing transcriptional corepressor
    • DeSilva H., Lee K., Osley M.A. Functional dissection of yeast hir1p, a WD repeat-containing transcriptional corepressor. Genetics. 148:1998;657-668.
    • (1998) Genetics , vol.148 , pp. 657-668
    • Desilva, H.1    Lee, K.2    Osley, M.A.3
  • 106
    • 0035110866 scopus 로고    scopus 로고
    • Control of eukaryotic transcription elongation
    • (REVIEWS1006)
    • Winston F. Control of eukaryotic transcription elongation. Genome Biol. 2:2001;1-3. (REVIEWS1006).
    • (2001) Genome Biol. , vol.2 , pp. 1-3
    • Winston, F.1
  • 107
    • 0029890667 scopus 로고    scopus 로고
    • Evidence that Spt6p controls chromatin structure by a direct interaction with histones
    • Bortvin A., Winston F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science. 272:1996;1473-1476.
    • (1996) Science , vol.272 , pp. 1473-1476
    • Bortvin, A.1    Winston, F.2
  • 108
    • 0031858054 scopus 로고    scopus 로고
    • Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I
    • Kaufman P.D., Cohen J.L., Osley M.A. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18:1998;4793-4806.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4793-4806
    • Kaufman, P.D.1    Cohen, J.L.2    Osley, M.A.3
  • 110
    • 0033551430 scopus 로고    scopus 로고
    • Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha
    • Wittmeyer J., Joss L., Formosa T. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry. 38:1999;8961-8971.
    • (1999) Biochemistry , vol.38 , pp. 8961-8971
    • Wittmeyer, J.1    Joss, L.2    Formosa, T.3
  • 111
    • 0035027953 scopus 로고    scopus 로고
    • A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription
    • Brewster N.K., Johnston G.C., Singer R.A. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol. Cell. Biol. 21:2001;3491-3502.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 3491-3502
    • Brewster, N.K.1    Johnston, G.C.2    Singer, R.A.3
  • 112
    • 0035577668 scopus 로고    scopus 로고
    • Histone H3 specific acetyltransferases are essential for cell cycle progression
    • Howe L., Auston D., Grant P., John S., Cook R.G., Workman J.L., Pillus L. Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev. 15:2001;3144-3154.
    • (2001) Genes Dev. , vol.15 , pp. 3144-3154
    • Howe, L.1    Auston, D.2    Grant, P.3    John, S.4    Cook, R.G.5    Workman, J.L.6    Pillus, L.7
  • 115
    • 0037663448 scopus 로고
    • Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor
    • Shimojima T., Okada M., Nakayama T., Ueda H., Okawa K., Iwamatsu A., Handa H., Hirose S. Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor. Genes Dev. 17:1903;1605-1616.
    • (1903) Genes Dev. , vol.17 , pp. 1605-1616
    • Shimojima, T.1    Okada, M.2    Nakayama, T.3    Ueda, H.4    Okawa, K.5    Iwamatsu, A.6    Handa, H.7    Hirose, S.8
  • 116
    • 0031423463 scopus 로고    scopus 로고
    • Decreased expression of the high-mobility group protein T160 by antisense RNA impairs the growth of mouse fibroblasts
    • Hertel L., Foresta P., Barbiero G., Ying G.G., Bonelli G., Baccino F.M., Landolfo S., Gariglio M. Decreased expression of the high-mobility group protein T160 by antisense RNA impairs the growth of mouse fibroblasts. Biochimie. 79:1997;717-723.
    • (1997) Biochimie , vol.79 , pp. 717-723
    • Hertel, L.1    Foresta, P.2    Barbiero, G.3    Ying, G.G.4    Bonelli, G.5    Baccino, F.M.6    Landolfo, S.7    Gariglio, M.8
  • 117
    • 0031056176 scopus 로고    scopus 로고
    • Suppression of high mobility group protein T160 expression impairs mouse cytomegalovirus replication
    • Gariglio M., Foresta P., Sacchi C., Lembo M., Hertel L., Landolfo S. Suppression of high mobility group protein T160 expression impairs mouse cytomegalovirus replication. J. Gen. Virol. 78:1997;665-670.
    • (1997) J. Gen. Virol. , vol.78 , pp. 665-670
    • Gariglio, M.1    Foresta, P.2    Sacchi, C.3    Lembo, M.4    Hertel, L.5    Landolfo, S.6
  • 118
    • 0033179494 scopus 로고    scopus 로고
    • The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation
    • Hertel L., De Andrea M., Bellomo G., Santoro P., Landolfo S., Gariglio M. The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp. Cell Res. 250:1999;313-328.
    • (1999) Exp. Cell Res. , vol.250 , pp. 313-328
    • Hertel, L.1    De Andrea, M.2    Bellomo, G.3    Santoro, P.4    Landolfo, S.5    Gariglio, M.6
  • 120
    • 0031897060 scopus 로고    scopus 로고
    • The HMG domain protein SSRP1/PREIIBF is involved in activation of the human embryonic beta-like globin gene
    • Dyer M.A., Hayes P.J., Baron M.H. The HMG domain protein SSRP1/PREIIBF is involved in activation of the human embryonic beta-like globin gene. Mol. Cell. Biol. 18:1998;2617-2628.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 2617-2628
    • Dyer, M.A.1    Hayes, P.J.2    Baron, M.H.3
  • 121
    • 0033025520 scopus 로고    scopus 로고
    • Cooperative transcriptional activation by serum response factor and the high mobility group protein SSRP1
    • Spencer J.A., Baron M.H., Olson E.N. Cooperative transcriptional activation by serum response factor and the high mobility group protein SSRP1. J. Biol. Chem. 274:1999;15686-15693.
    • (1999) J. Biol. Chem. , vol.274 , pp. 15686-15693
    • Spencer, J.A.1    Baron, M.H.2    Olson, E.N.3
  • 122
    • 0037107374 scopus 로고    scopus 로고
    • SSRP1 functions as a co-activator of the transcriptional activator p63
    • Zeng S.X., Dai M.S., Keller D.M., Lu H. SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO J. 21:2002;5487-5497.
    • (2002) EMBO J. , vol.21 , pp. 5487-5497
    • Zeng, S.X.1    Dai, M.S.2    Keller, D.M.3    Lu, H.4
  • 123
    • 0035854710 scopus 로고    scopus 로고
    • Interaction of FACT, SSRP1, and the high mobility group (HMG) domain of SSRP1 with DNA damaged by the anticancer drug cisplatin
    • Yarnell A.T., Oh S., Reinberg D., Lippard S.J. Interaction of FACT, SSRP1, and the high mobility group (HMG) domain of SSRP1 with DNA damaged by the anticancer drug cisplatin. J. Biol. Chem. 276:2001;25736-25741.
    • (2001) J. Biol. Chem. , vol.276 , pp. 25736-25741
    • Yarnell, A.T.1    Oh, S.2    Reinberg, D.3    Lippard, S.J.4
  • 125
    • 0037147329 scopus 로고    scopus 로고
    • P53 serine392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex
    • Keller D.M., Lu H. p53 serine392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J. Biol. Chem. 277:2002;50206-50213.
    • (2002) J. Biol. Chem. , vol.277 , pp. 50206-50213
    • Keller, D.M.1    Lu, H.2
  • 126
    • 0242579933 scopus 로고    scopus 로고
    • The FACT Complex Travels with Elongating RNA Polymerase II and Is Important for the Fidelity of Transcriptional Initiation in Vivo
    • Mason P.B., Struhl K. The FACT Complex Travels with Elongating RNA Polymerase II and Is Important for the Fidelity of Transcriptional Initiation In Vivo. Mol. Cell. Biol. 23:2003;8323-8333.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8323-8333
    • Mason, P.B.1    Struhl, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.