메뉴 건너뛰기




Volumn 24, Issue 1, 2009, Pages 15-43

The extended Ritz method for functional optimization: Overview and applications to single-person and team optimal decision problems

Author keywords

Curse of dimensionality; Dynamic programming; Dynamic routing; Stochastic T stage decision problems; Suboptimal solutions; Water reservoirs management

Indexed keywords

APPLICATIONS; APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; COMMUNICATION; COMPUTER NETWORKS; DYNAMIC PROGRAMMING; FUNCTIONS; NONLINEAR PROGRAMMING; OPTIMIZATION; POLYNOMIAL APPROXIMATION; PROBABILITY DENSITY FUNCTION; STOCHASTIC CONTROL SYSTEMS; SYSTEMS ENGINEERING; TELECOMMUNICATION NETWORKS;

EID: 57649217589     PISSN: 10556788     EISSN: 10294937     Source Type: Journal    
DOI: 10.1080/10556780802328900     Document Type: Article
Times cited : (5)

References (66)
  • 2
  • 4
    • 12444304456 scopus 로고    scopus 로고
    • Optimization of approximating networks for optimal fault diagnosis
    • A. Alessandri and M. Sanguined, Optimization of approximating networks for optimal fault diagnosis, Optim. Methods Softw. 20 (2005), pp. 241-266.
    • (2005) Optim. Methods Softw , vol.20 , pp. 241-266
    • Alessandri, A.1    Sanguined, M.2
  • 5
    • 0036506049 scopus 로고    scopus 로고
    • Optimization-based learning with bounded error for feedforward neural networks
    • A. Alessandri, M. Sanguined, and M. Maggiore, Optimization-based learning with bounded error for feedforward neural networks, IEEE Trans. Neural Net. 13 (2002), pp. 261-273.
    • (2002) IEEE Trans. Neural Net , vol.13 , pp. 261-273
    • Alessandri, A.1    Sanguined, M.2    Maggiore, M.3
  • 9
    • 84882555334 scopus 로고    scopus 로고
    • Water reservoirs management under uncertainty by approximating networks and learning from data
    • Chapter 6, A. Castelletti and R. Soncini Sessa, eds. Elsevier Science Ltd
    • M. Baglietto, C. Cervellera, M. Sanguined, and R. Zoppoli, Water reservoirs management under uncertainty by approximating networks and learning from data, in Topics on System Analysis and Integrated Water Resource Management, Chapter 6, A. Castelletti and R. Soncini Sessa, eds. Elsevier Science Ltd., 2006, pp. 117-139.
    • (2006) Topics on System Analysis and Integrated Water Resource Management , pp. 117-139
    • Baglietto, M.1    Cervellera, C.2    Sanguined, M.3    Zoppoli, R.4
  • 10
    • 0035439793 scopus 로고    scopus 로고
    • Numerical solutions to the Witsenhausen counterexample by approximating networks
    • M. Baglietto, T. Parisini, and R. Zoppoli, Numerical solutions to the Witsenhausen counterexample by approximating networks, IEEE Trans. Automat. Control 46 (2001), pp. 1471-1477.
    • (2001) IEEE Trans. Automat. Control , vol.46 , pp. 1471-1477
    • Baglietto, M.1    Parisini, T.2    Zoppoli, R.3
  • 11
    • 0035330108 scopus 로고    scopus 로고
    • Distributed-information neural control. The case of dynamic routing in traffic networks
    • -. Distributed-information neural control. The case of dynamic routing in traffic networks, IEEE Trans. Neural Net. 12 (2001), pp. 485-502.
    • (2001) IEEE Trans. Neural Net , vol.12 , pp. 485-502
    • Baglietto, M.1    Parisini, T.2    Zoppoli, R.3
  • 12
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal'function
    • A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal'function, IEEE Trans. Infom. Theory 39 (1993), pp. 930-945.
    • (1993) IEEE Trans. Infom. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 13
    • 0032202335 scopus 로고    scopus 로고
    • Successive Galerkin approximation algorithms for nonlinear optimal and robust control
    • R.W. Beard and T.W. Mclain, Successive Galerkin approximation algorithms for nonlinear optimal and robust control, Int. J. Control 71 (1998), pp. 717-743.
    • (1998) Int. J. Control , vol.71 , pp. 717-743
    • Beard, R.W.1    Mclain, T.W.2
  • 14
    • 0003787146 scopus 로고
    • Princeton University Press, Princeton, NJ
    • R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 15
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman, Hinging hyperplanes for regression, classification, and function approximation, IEEE Trans. Inform. Theory 39 (1993), pp. 993-1013.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 993-1013
    • Breiman, L.1
  • 16
    • 0001820934 scopus 로고    scopus 로고
    • Applying experimental design and regression splines to highdimensional continuous-state stochastic dynamic programming
    • V.C.P. Chen, D. Ruppert, and C.A. Shoemaker, Applying experimental design and regression splines to highdimensional continuous-state stochastic dynamic programming, Oper. Res. 47 (1999), pp. 38-53.
    • (1999) Oper. Res , vol.47 , pp. 38-53
    • Chen, V.C.P.1    Ruppert, D.2    Shoemaker, C.A.3
  • 18
    • 0007159311 scopus 로고    scopus 로고
    • On Ritz type discretizations for optimal control problems
    • Research Notes in Mathematics, Chapman-Hall
    • U. Felgenhauer, On Ritz type discretizations for optimal control problems, Proceeding of 18th IFIP-ICZ Conference, Research Notes in Mathematics, Chapman-Hall, Vol. 386, 1999, pp. 91-99.
    • (1999) Proceeding of 18th IFIP-ICZ Conference , vol.386 , pp. 91-99
    • Felgenhauer, U.1
  • 19
    • 0024158874 scopus 로고
    • Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems
    • E. Foufoula-Georgiou and P.K. Kitanidis, Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems, Water Resour. Res. 24 (1988), pp. 1345-1359.
    • (1988) Water Resour. Res , vol.24 , pp. 1345-1359
    • Foufoula-Georgiou, E.1    Kitanidis, P.K.2
  • 21
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio, Regularization theory and neural networks architectures, Neural Comput. 7 (1995). pp. 219-269.
    • (1995) Neural Comput , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 22
    • 85139377386 scopus 로고    scopus 로고
    • Approximation schemes for functional optimization problems
    • to appear
    • S. Giulini and M. Sanguined, Approximation schemes for functional optimization problems, J. Optim. Theory Appl. to appear.
    • J. Optim. Theory Appl
    • Giulini, S.1    Sanguined, M.2
  • 23
    • 58849109485 scopus 로고    scopus 로고
    • Accuracy of suboptimal solutions to kernel principal component analysis
    • DOI:10.1007/s10589-007-9108-y
    • G. Gnecco and M. Sanguineti, Accuracy of suboptimal solutions to kernel principal component analysis, Comput. Optim. Appl. 2008, DOI:10.1007/s10589-007-9108-y.
    • (2008) Comput. Optim. Appl
    • Gnecco, G.1    Sanguineti, M.2
  • 24
    • 58149463469 scopus 로고    scopus 로고
    • The weight-decay technique in learning from data: An optimization point of view
    • DOI:10.1007/s10287-008-0072-5
    • -. The weight-decay technique in learning from data: An optimization point of view, Comp. Manag. Sci. 2008, DOI:10.1007/s10287-008-0072-5.
    • (2008) Comp. Manag. Sci
    • Gnecco, G.1    Sanguineti, M.2
  • 25
    • 57649240046 scopus 로고    scopus 로고
    • Approximation error bounds via Rademacher complexity
    • -. Approximation error bounds via Rademacher complexity, Appl. Math. Sci. 2 (2008), pp. 153-176.
    • (2008) Appl. Math. Sci , vol.2 , pp. 153-176
    • Gnecco, G.1    Sanguineti, M.2
  • 26
    • 61449255581 scopus 로고    scopus 로고
    • Estimates of the approximation error using Rademacher complexity: Learning vector-valued functions
    • to appear
    • -. Estimates of the approximation error using Rademacher complexity: learning vector-valued functions, J. Inequal. Appl. to appear.
    • J. Inequal. Appl
    • Gnecco, G.1    Sanguineti, M.2
  • 27
    • 0001546764 scopus 로고    scopus 로고
    • Convergent on-line algorithms for supervised learning in neural networks
    • L. Grippo, Convergent on-line algorithms for supervised learning in neural networks, IEEE Trans. Neural Net. 11 (2002), pp. 1284-1299.
    • (2002) IEEE Trans. Neural Net , vol.11 , pp. 1284-1299
    • Grippo, L.1
  • 28
    • 0016624279 scopus 로고
    • The Ritz-Trefftz method for state and control constrained optimal control problems
    • W. W. Hager, The Ritz-Trefftz method for state and control constrained optimal control problems, SIAM J. Numer. Anal. 12 (1975), pp. 854-867.
    • (1975) SIAM J. Numer. Anal , vol.12 , pp. 854-867
    • Hager, W.W.1
  • 29
    • 0032024330 scopus 로고    scopus 로고
    • A decentralized discrete-time controller for dynamic routing
    • A. Iftar and E.J. Davison, A decentralized discrete-time controller for dynamic routing, Int. J. Control 69 (1998), pp. 599-632.
    • (1998) Int. J. Control , vol.69 , pp. 599-632
    • Iftar, A.1    Davison, E.J.2
  • 30
    • 0027601994 scopus 로고
    • Numerical solution of continuous-state dynamic programs using linear and spline interpolation
    • S. A. Johnson, J.R. Stedinger, C. Shoemaker, Y. Li, and J.A. Tejada-Guibert, Numerical solution of continuous-state dynamic programs using linear and spline interpolation, Oper. Res. 41 (1993), pp. 484-500.
    • (1993) Oper. Res , vol.41 , pp. 484-500
    • Johnson, S.A.1    Stedinger, J.R.2    Shoemaker, C.3    Li, Y.4    Tejada-Guibert, J.A.5
  • 31
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L.K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Ann. Stat. 20 (1992), pp. 608-613.
    • (1992) Ann. Stat , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 32
    • 2542498732 scopus 로고    scopus 로고
    • Minimization of error junctionals over variable-basis functions
    • P.C. Kainen, V. Ku̇rková, and V.M. Sanguineti, Minimization of error junctionals over variable-basis functions, SIAM J. Optim. 14 (2003), pp. 732-742.
    • (2003) SIAM J. Optim , vol.14 , pp. 732-742
    • Kainen, P.C.1    Ku̇rková, V.2    Sanguineti, V.M.3
  • 33
    • 29144497335 scopus 로고    scopus 로고
    • Rates of approximate minimization of error functlonals over Boolean variable-basis functions
    • -. Rates of approximate minimization of error functlonals over Boolean variable-basis functions, J. Mathe. Model. Algorithms 4 (2005), pp. 355-368.
    • (2005) J. Mathe. Model. Algorithms , vol.4 , pp. 355-368
    • Kainen, P.C.1    Ku̇rková, V.2    Sanguineti, V.M.3
  • 35
    • 0344993943 scopus 로고    scopus 로고
    • Approximation by neural networks is not continuous
    • P.C. Kainen, V. Ku̇rková, and A. Vogt, Approximation by neural networks is not continuous, Neurocomputing 29 (1999), pp. 47-56.
    • (1999) Neurocomputing , vol.29 , pp. 47-56
    • Kainen, P.C.1    Ku̇rková, V.2    Vogt, A.3
  • 36
    • 0008241587 scopus 로고    scopus 로고
    • Geometry and topology of continuous best and near best approximations
    • -. Geometry and topology of continuous best and near best approximations, J. Approx. Theory 105 (2000), pp. 252-262.
    • (2000) J. Approx. Theory , vol.105 , pp. 252-262
    • Kainen, P.C.1    Ku̇rková, V.2    Vogt, A.3
  • 38
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • V. Ku̇rková, P.C. Kainen, and V. Kreinovich, Estimates of the number of hidden units and variation with respect to half-spaces, Neural Net. 10 (1997), pp. 1061-1068.
    • (1997) Neural Net , vol.10 , pp. 1061-1068
    • Ku̇rková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 39
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • V. Ku̇rková and M. Sanguineti, Bounds on rates of variable-basis and neural-network approximation, IEEE Trans. Inform. Theory 47 (2001), pp. 2659-2665.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2659-2665
    • Ku̇rková, V.1    Sanguineti, M.2
  • 40
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst-case errors in linear and neural network approximation
    • -. Comparison of worst-case errors in linear and neural network approximation, IEEE Trans. Inform. Theory 48 (2002), pp. 264-275.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 264-275
    • Ku̇rková, V.1    Sanguineti, M.2
  • 41
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • -. Learning with generalization capability by kernel methods of bounded complexity, J. Complexity 21 (2005), pp. 350-367.
    • (2005) J. Complexity , vol.21 , pp. 350-367
    • Ku̇rková, V.1    Sanguineti, M.2
  • 42
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • -. Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. 15 (2005), pp. 461-487.
    • (2005) SIAM J. Optim , vol.15 , pp. 461-487
    • Ku̇rková, V.1    Sanguineti, M.2
  • 43
    • 61349203972 scopus 로고    scopus 로고
    • Approximate minimization of the regularized expected error over kernel models
    • to appear
    • -. Approximate minimization of the regularized expected error over kernel models, Math. Oper. Res. to appear.
    • Math. Oper. Res
    • Ku̇rková, V.1    Sanguineti, M.2
  • 44
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • V. Ku̇rková, P. Savický, and K. Hlává cková, Representations and rates of approximation of real-valued Boolean functions by neural networks, Neural Netw. 11 (1998), pp. 651-659.
    • (1998) Neural Netw , vol.11 , pp. 651-659
    • Ku̇rková, V.1    Savický, P.2    Hlává cková, K.3
  • 46
    • 0032950772 scopus 로고    scopus 로고
    • Lower bounds for approximation by MLP neural networks
    • V. Maiorov and A. Pinkus, Lower bounds for approximation by MLP neural networks, Neurocomputing 25 (1999), pp. 81-91.
    • (1999) Neurocomputing , vol.25 , pp. 81-91
    • Maiorov, V.1    Pinkus, A.2
  • 47
    • 0001559309 scopus 로고
    • Elements for a theory of teams
    • J. Marschak, Elements for a theory of teams, Manag. Sci. 1 (1955), pp. 127-137.
    • (1955) Manag. Sci , vol.1 , pp. 127-137
    • Marschak, J.1
  • 49
    • 0000482137 scopus 로고    scopus 로고
    • On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions
    • P. Niyogi and F. Girosi, On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions, Neural Comput. 8 (1996), pp. 819-842.
    • (1996) Neural Comput , vol.8 , pp. 819-842
    • Niyogi, P.1    Girosi, F.2
  • 51
    • 0028425062 scopus 로고
    • Neural networks for feedback feedforward nonlinear control systems
    • T. Parisini and R. Zoppoli, Neural networks for feedback feedforward nonlinear control systems, IEEE Trans. Neural Net. 5 (1994), pp. 436-449.
    • (1994) IEEE Trans. Neural Net , vol.5 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 52
    • 0032209114 scopus 로고    scopus 로고
    • Neural approximations for infinite-horizon optimal control of nonlinear stochastic systems
    • -. Neural approximations for infinite-horizon optimal control of nonlinear stochastic systems, IEEE Trans. Neural Netw. 9 (1998), pp. 1388-1408.
    • (1998) IEEE Trans. Neural Netw , vol.9 , pp. 1388-1408
    • Parisini, T.1    Zoppoli, R.2
  • 53
    • 0035328580 scopus 로고    scopus 로고
    • Improved dynamic programming methods for optimal control of lumpedparameter stochastic systems
    • C.R. Philbrick, Jr. and P.K. Kitanidis, Improved dynamic programming methods for optimal control of lumpedparameter stochastic systems, Oper. Res. 49 (1999), pp. 398-412.
    • (1999) Oper. Res , vol.49 , pp. 398-412
    • Philbrick Jr., C.R.1    Kitanidis, P.K.2
  • 54
    • 0009427231 scopus 로고    scopus 로고
    • Approximation by ridge functions
    • A. Le Méhauté, C. Rabut, and L.L. Schumaker, eds, Vanderbilt University Press, Nashville, TN
    • A. Pinkus, Approximation by ridge functions, in Surface Fitting and Multiresolution Methods, A. Le Méhauté, C. Rabut, and L.L. Schumaker, eds., Vanderbilt University Press, Nashville, TN, 1997, pp. 1-14.
    • (1997) Surface Fitting and Multiresolution Methods , pp. 1-14
    • Pinkus, A.1
  • 55
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • -. Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999), pp. 143-195.
    • (1999) Acta Numer , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 57
    • 0343262489 scopus 로고    scopus 로고
    • W. Ritz, Über Eine Neue Methode zur Lösung Gewisser Variationsprobleme der Mathematischen Physik, J. für die reine und angewandte Mathematik 135 (1909), pp. 1-61.
    • W. Ritz, Über Eine Neue Methode zur Lösung Gewisser Variationsprobleme der Mathematischen Physik, J. für die reine und angewandte Mathematik 135 (1909), pp. 1-61.
  • 58
    • 57649209233 scopus 로고    scopus 로고
    • Universal approximation by ridge computational models: A survey
    • M. Sanguineti, Universal approximation by ridge computational models: a survey, Open Appl. Math. J. 2 (2008), pp. 31-58.
    • (2008) Open Appl. Math. J , vol.2 , pp. 31-58
    • Sanguineti, M.1
  • 59
    • 0017428570 scopus 로고
    • The modeling of adaptive routing in data-communication networks
    • A. Segall, The modeling of adaptive routing in data-communication networks. IEEE Trans. Commun. 25 (1977), pp. 85-95.
    • (1977) IEEE Trans. Commun , vol.25 , pp. 85-95
    • Segall, A.1
  • 61
    • 0018544387 scopus 로고
    • Convergence of the control parametrization Ritz method for nonlinear optimal control problems
    • H.R. Sirisena and F.S. Chou, Convergence of the control parametrization Ritz method for nonlinear optimal control problems, J. Optim. Theory Appl. 29 (1979), pp. 369-382.
    • (1979) J. Optim. Theory Appl , vol.29 , pp. 369-382
    • Sirisena, H.R.1    Chou, F.S.2
  • 62
    • 0000600683 scopus 로고
    • A counterexample in stochastic optimum control
    • H.S. Witsenhausen. A counterexample in stochastic optimum control, SIAM J. Control. 6 (1968), pp. 131-147.
    • (1968) SIAM J. Control , vol.6 , pp. 131-147
    • Witsenhausen, H.S.1
  • 63
    • 0020335699 scopus 로고
    • Dynamic programming applications in water resources
    • S. Yakowitz, Dynamic programming applications in water resources, Water Resour. Res. 18 (1982), pp. 673-696.
    • (1982) Water Resour. Res , vol.18 , pp. 673-696
    • Yakowitz, S.1
  • 64
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of Nstage nonlinear nonquadratic optimal control problems
    • A. Isidori and T.J. Tarn, Eds, Birkhäuser, Boston
    • R. Zoppoli and T. Parisini, Learning techniques and neural networks for the solution of Nstage nonlinear nonquadratic optimal control problems, in Systems, Models and Feedback: Theory and Applications, A. Isidori and T.J. Tarn, Eds., Birkhäuser, Boston, 1992, pp. 193-210.
    • (1992) Systems, Models and Feedback: Theory and Applications , pp. 193-210
    • Zoppoli, R.1    Parisini, T.2
  • 65
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and the extended Ritz method for the solution of functional optimization problems
    • R. Zoppoli, M. Sanguineti, and T. Parisini, Approximating networks and the extended Ritz method for the solution of functional optimization problems, J. Optim. Theory Appl. 112 2002, pp. 403-439.
    • (2002) J. Optim. Theory Appl , vol.112 , pp. 403-439
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 66


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.