메뉴 건너뛰기




Volumn 6, Issue 1, 2009, Pages 53-79

The weight-decay technique in learning from data: An optimization point of view

Author keywords

Learning from data; Rates of convergence; Regularization; Suboptimal solutions; Weight decay

Indexed keywords


EID: 58149463469     PISSN: 1619697X     EISSN: 16196988     Source Type: Journal    
DOI: 10.1007/s10287-008-0072-5     Document Type: Article
Times cited : (31)

References (46)
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N (1950) Theory of reproducing kernels. Trans AMS 68: 337-404
    • (1950) Trans AMS , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Bartlett PL (1998) The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44(2): 525-536
    • (1998) IEEE Trans Inf Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 5
    • 77957009494 scopus 로고
    • Linear inverse and ill-posed problems
    • Bertero M (1989) Linear inverse and ill-posed problems. Adv Electron Electron Phys 75: 1-120
    • (1989) Adv Electron Electron Phys , vol.75 , pp. 1-120
    • Bertero, M.1
  • 9
    • 0034558491 scopus 로고    scopus 로고
    • Training neural networks with noisy data as an ill-posed problem
    • Burger M, Engl H (2000) Training neural networks with noisy data as an ill-posed problem. Adv Comput Math 13: 335-354
    • (2000) Adv Comput Math , vol.13 , pp. 335-354
    • Burger, M.1    Engl, H.2
  • 10
    • 0037261148 scopus 로고    scopus 로고
    • Analysis of Tikhonov regularization for function approximation by neural networks
    • Burger M, Neubauer A (2002) Analysis of Tikhonov regularization for function approximation by neural networks. Neural Netw 16: 79-90
    • (2002) Neural Netw , vol.16 , pp. 79-90
    • Burger, M.1    Neubauer, A.2
  • 12
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F, Smale S (2001) On the mathematical foundations of learning. Bull AMS 39: 1-49
    • (2001) Bull AMS , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 13
    • 0036436325 scopus 로고    scopus 로고
    • Best choices for regularization parameters in learning theory: On the bias-variance problem
    • Cucker F, Smale S (2002) Best choices for regularization parameters in learning theory: On the bias-variance problem. Found Comput Math 2: 413-428
    • (2002) Found Comput Math , vol.2 , pp. 413-428
    • Cucker, F.1    Smale, S.2
  • 14
    • 0042156952 scopus 로고    scopus 로고
    • Some remarks on the condition number of a real random square matrix
    • Cuesta-Albertos JA, Wschebor M (2003) Some remarks on the condition number of a real random square matrix. J Compl 19: 548-554
    • (2003) J Compl , vol.19 , pp. 548-554
    • Cuesta-Albertos, J.A.1    Wschebor, M.2
  • 15
    • 0043069541 scopus 로고
    • The geometry of ill-conditioning
    • Demmel J (1987) The geometry of ill-conditioning. J Compl 3: 201-229
    • (1987) J Compl , vol.3 , pp. 201-229
    • Demmel, J.1
  • 18
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi F, Jones M, Poggio T (1995) Regularization theory and neural networks architectures. Neural Comput 7: 219-269
    • (1995) Neural Comput , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 19
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi F (1998) An equivalence between sparse approximation and support vector machines. Neural Comput 10: 1455-1480
    • (1998) Neural Comput , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 20
    • 0000065292 scopus 로고
    • Regularization theory, radial basis functions and networks
    • In: Cherkassky JHFV, Wechsler H(eds) ser. NATO ASI Series F, Computer and Systems Sciences. Springer, Berlin
    • Girosi F (1994) Regularization theory, radial basis functions and networks. In: Cherkassky JHFV, Wechsler H(eds) From Statistics to Neural Networks. Theory and pattern recognition applications, ser. NATO ASI Series F, Computer and Systems Sciences. Springer, Berlin, pp 166-187
    • (1994) From Statistics to Neural Networks. Theory and Pattern Recognition Applications , pp. 166-187
    • Girosi, F.1
  • 21
    • 58849109485 scopus 로고    scopus 로고
    • Accuracy of suboptimal solutions to kernel principal component analysis
    • doi: 10.1007/s10589-007-9108-y
    • Gnecco G, Sanguineti M (2007) Accuracy of suboptimal solutions to kernel principal component analysis. Comput Optim Appl. doi: 10.1007/ s10589-007-9108-y
    • (2007) Comput Optim Appl.
    • Gnecco, G.1    Sanguineti, M.2
  • 24
    • 0032363670 scopus 로고    scopus 로고
    • The weight decay backpropagation for generalizations with missing values
    • Gupta A, Lam M (1998) The weight decay backpropagation for generalizations with missing values. Ann Oper Res 78: 165-187
    • (1998) Ann Oper Res , vol.78 , pp. 165-187
    • Gupta, A.1    Lam, M.2
  • 25
    • 0032144712 scopus 로고    scopus 로고
    • Weight decay backpropagation for noisy data
    • Gupta A, Lam M (1998) Weight decay backpropagation for noisy data. Neural Netw 11: 1127-1138
    • (1998) Neural Netw , vol.11 , pp. 1127-1138
    • Gupta, A.1    Lam, M.2
  • 26
    • 33750610677 scopus 로고    scopus 로고
    • Nonlinear function approximation: Computing smooth solutions with an adaptive greedy algorithm
    • Hofinger A (2006) Nonlinear function approximation: Computing smooth solutions with an adaptive greedy algorithm. J Approxim Theory 143: 159-175
    • (2006) J Approxim Theory , vol.143 , pp. 159-175
    • Hofinger, A.1
  • 28
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • Kimeldorf GS, Wahba G (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann Math Stat 41: 495-502
    • (1970) Ann Math Stat , vol.41 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 29
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • In: Morgan Kaufmann Pub
    • Krogh A, Hertz JA (1992) A simple weight decay can improve generalization. In: Advances in neural information processing systems, vol. 4. Morgan Kaufmann Pub., pp 950-957
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 950-957
    • Krogh, A.1    Hertz, J.A.2
  • 31
    • 18144423627 scopus 로고    scopus 로고
    • Learning from data as an inverse problem
    • In: Antoch J(eds) Physica-Verlag/Springer, Heidelberg
    • Kůrková V (2004) Learning from data as an inverse problem. In: Antoch J(eds) COMPSTAT 2004 - proceedings in computational statistics. Physica-Verlag/Springer, Heidelberg, pp 1377-1384
    • (2004) COMPSTAT 2004 - Proceedings in Computational Statistics , pp. 1377-1384
    • Kůrková, V.1
  • 32
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • Kůrková V, Sanguineti M (2001) Bounds on rates of variable-basis and neural-network approximation. IEEE Trans Inf Theory 47: 2659-2665
    • (2001) IEEE Trans Inf Theory , vol.47 , pp. 2659-2665
    • Kůrková, V.1    Sanguineti, M.2
  • 33
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • Kůrková V, Sanguineti M (2005) Error estimates for approximate optimization by the extended Ritz method. SIAM J Optim 15: 461-487
    • (2005) SIAM J Optim , vol.15 , pp. 461-487
    • Kůrková, V.1    Sanguineti, M.2
  • 34
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • Kůrková V, Sanguineti M (2005) Learning with generalization capability by kernel methods of bounded complexity. J Compl 21: 350-367
    • (2005) J Compl , vol.21 , pp. 350-367
    • Kůrková, V.1    Sanguineti, M.2
  • 35
    • 0032096332 scopus 로고    scopus 로고
    • Representations and rates of approximation of real-valued Boolean functions by neural networks
    • Kůrková V, Savická P, Hlaváčková K (1998) Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Netw 11: 651-659
    • (1998) Neural Netw , vol.11 , pp. 651-659
    • Kůrková, V.1    Savická, P.2    Hlaváčková, K.3
  • 36
    • 0001671709 scopus 로고
    • Convergence of minimizing sequences in conditional extremum problems
    • Levitin ES, Polyak BT (1966) Convergence of minimizing sequences in conditional extremum problems. Dokl Akad Nauk SSSR 168(5): 764-767
    • (1966) Dokl Akad Nauk SSSR , vol.168 , Issue.5 , pp. 764-767
    • Levitin, E.S.1    Polyak, B.T.2
  • 38
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F (1990) Networks for approximation and learning. Proc IEEE 78: 1481-1497
    • (1990) Proc IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 39
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • Poggio T, Smale S (2003) The mathematics of learning: Dealing with data. Notices AMS 50: 536-544
    • (2003) Notices AMS , vol.50 , pp. 536-544
    • Poggio, T.1    Smale, S.2
  • 42
    • 84865131152 scopus 로고    scopus 로고
    • A generalized representer theorem
    • In: Lecture Notes in Artificial Intelligence Springer, Heidelberg
    • Schïlkopf B, Herbrich R, Smola AJ, Williamson RC (2001) A generalized representer theorem. In: Proceedings of COLT'01, Lecture Notes in Artificial Intelligence. Springer, Heidelberg, pp 416-424
    • (2001) Proceedings of COLT'01 , pp. 416-424
    • Schïlkopf, B.1    Herbrich, R.2    Smola, A.J.3    Williamson, R.C.4
  • 44
    • 0032122764 scopus 로고    scopus 로고
    • Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm
    • Treadgold NK, Gedeon TD (1998) Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm. IEEE Trans Neural Netw 9(4): 662-668
    • (1998) IEEE Trans Neural Netw , vol.9 , Issue.4 , pp. 662-668
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 46
    • 0018211150 scopus 로고
    • Vestnik Moskovskogo Universiteta
    • (English translation: Moscow University Computational Mathematics and Cybernetics, pp 10-21, 1979)
    • Vladimirov AA, Nesterov YE, Chekanov YN (1978) On uniformly convex functionals. Vestnik Moskovskogo Universiteta. Seriya 15 - Vychislitel'naya Matematika i Kibernetika, vol 3, pp 12-23 (English translation: Moscow University Computational Mathematics and Cybernetics, pp 10-21, 1979)
    • (1978) Seriya 15 - Vychislitel'naya Matematika I Kibernetika , vol.3 , pp. 12-23
    • Vladimirov, A.A.1    Nesterov, Y.E.2    Chekanov, Y.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.