메뉴 건너뛰기




Volumn 44, Issue 11, 1999, Pages 2028-2042

A neural state estimator with bounded errors for nonlinear systems

Author keywords

Bounded error state estimation; Discrete time nonlinear systems; Neural networks

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; DISCRETE TIME CONTROL SYSTEMS; ERROR ANALYSIS; INTELLIGENT CONTROL; NEURAL NETWORKS; NONLINEAR CONTROL SYSTEMS;

EID: 0033313315     PISSN: 00189286     EISSN: None     Source Type: Journal    
DOI: 10.1109/9.802911     Document Type: Article
Times cited : (78)

References (35)
  • 1
    • 0023365571 scopus 로고
    • Comparative study of nonlinear state-observation technique
    • B. L. Walcott, M. J. Corless, and S. H. Zak, "Comparative study of nonlinear state-observation technique," Int. J. Contr., vol. 45, pp. 2109-2132, 1987.
    • (1987) Int. J. Contr. , vol.45 , pp. 2109-2132
    • Walcott, B.L.1    Corless, M.J.2    Zak, S.H.3
  • 3
    • 0029267317 scopus 로고
    • Observer design for nonlinear systems with discrete-time measurements
    • P. E. Moraal and J. W. Grizzle, "Observer design for nonlinear systems with discrete-time measurements," IEEE Trans. Automat. Contr., vol. 40, pp. 395-404, 1995.
    • (1995) IEEE Trans. Automat. Contr. , vol.40 , pp. 395-404
    • Moraal, P.E.1    Grizzle, J.W.2
  • 4
    • 0001399884 scopus 로고
    • State observation by on-line minimization
    • G. Zimmer, "State observation by on-line minimization," Int. J. Contr., vol. 60, pp. 595-606, 1994.
    • (1994) Int. J. Contr. , vol.60 , pp. 595-606
    • Zimmer, G.1
  • 5
    • 0029326236 scopus 로고
    • Moving horizon observers and observer-based control
    • H. Michalska and D. Q. Mayne, "Moving horizon observers and observer-based control," IEEE Trans. Automat. Contr., vol. 6, pp. 995-1006, 1995.
    • (1995) IEEE Trans. Automat. Contr. , vol.6 , pp. 995-1006
    • Michalska, H.1    Mayne, D.Q.2
  • 6
    • 0030194070 scopus 로고    scopus 로고
    • Nonlinear receding-horizon state estimation by real-time optimization technique
    • T. Ohtsuka and H. A. Fujii, "Nonlinear receding-horizon state estimation by real-time optimization technique," J. Guidance, Contr., Dynamics, vol. 19, pp. 863-870, 1996.
    • (1996) J. Guidance, Contr., Dynamics , vol.19 , pp. 863-870
    • Ohtsuka, T.1    Fujii, H.A.2
  • 9
    • 0002176027 scopus 로고
    • Exact finite dimensional filters for a class of discrete-time systems
    • J. Levine and G. Pignie, "Exact finite dimensional filters for a class of discrete-time systems," Stochastics, vol. 18, pp. 97-132, 1986.
    • (1986) Stochastics , vol.18 , pp. 97-132
    • Levine, J.1    Pignie, G.2
  • 10
    • 84987224851 scopus 로고
    • Neural networks for nonlinear state estimation
    • T. Parisini and R. Zoppoli, "Neural networks for nonlinear state estimation," Int. J. Robust Nonlinear Contr., vol. 4, pp. 231-248, 1994.
    • (1994) Int. J. Robust Nonlinear Contr. , vol.4 , pp. 231-248
    • Parisini, T.1    Zoppoli, R.2
  • 11
    • 0031141599 scopus 로고    scopus 로고
    • Neural approximations for nonlinear finite-memory state estimation
    • A. Alessandri, T. Parisini, and R. Zoppoli, "Neural approximations for nonlinear finite-memory state estimation," Int. J. Contr., vol. 67, pp. 275-302, 1997.
    • (1997) Int. J. Contr. , vol.67 , pp. 275-302
    • Alessandri, A.1    Parisini, T.2    Zoppoli, R.3
  • 12
    • 0028498606 scopus 로고
    • Synthetic approach to optimal filtering
    • J. T. H. Lo, "Synthetic approach to optimal filtering," IEEE Trans. Neural Networks, vol. 5, pp. 803-811, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 803-811
    • Lo, J.T.H.1
  • 13
    • 0003320059 scopus 로고
    • Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems
    • A. Isidori and T. J. Tarn, Eds. Boston: Birkhäuser
    • R. Zoppoli and T. Parisini, "Learning techniques and neural networks for the solution of N-stage nonlinear nonquadratic optimal control problems," in Systems, Models and Feedback: Theory and Applications, A. Isidori and T. J. Tarn, Eds. Boston: Birkhäuser, 1992.
    • (1992) Systems, Models and Feedback: Theory and Applications
    • Zoppoli, R.1    Parisini, T.2
  • 14
    • 0028425062 scopus 로고
    • Neural networks for feedback feedforward nonlinear control systems
    • T. Parisini and R. Zoppoli, "Neural networks for feedback feedforward nonlinear control systems," IEEE Trans. Neural Networks, vol. 5, pp. 436-449, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 15
    • 0030169366 scopus 로고    scopus 로고
    • Neural approximations for multistage optimal control of nonlinear stochastic systems
    • _, "Neural approximations for multistage optimal control of nonlinear stochastic systems," IEEE Trans. Automat. Contr., vol. 41, pp. 889-895, 1996.
    • (1996) IEEE Trans. Automat. Contr. , vol.41 , pp. 889-895
  • 16
    • 0029394379 scopus 로고
    • A receding-horizon regulator for nonlinear systems and a neural approximation
    • _, "A receding-horizon regulator for nonlinear systems and a neural approximation," Automatica, vol. 31, pp. 1443-1451, 1995.
    • (1995) Automatica , vol.31 , pp. 1443-1451
  • 17
    • 0032209114 scopus 로고    scopus 로고
    • Neural approximations for infinite-horizon optimal control of nonlinear stochastic systems
    • _, "Neural approximations for infinite-horizon optimal control of nonlinear stochastic systems," IEEE Trans. Neural Networks, vol. 9, pp. 1388-1408, 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 1388-1408
  • 18
    • 0032096305 scopus 로고    scopus 로고
    • Nonlinear stabilization by receding-horizon neural regulators
    • T. Parisini, M. Sanguineti, and R. Zoppoli, "Nonlinear stabilization by receding-horizon neural regulators," Int. J. Contr., vol. 70, pp. 341-362, 1998.
    • (1998) Int. J. Contr. , vol.70 , pp. 341-362
    • Parisini, T.1    Sanguineti, M.2    Zoppoli, R.3
  • 19
    • 0032255740 scopus 로고    scopus 로고
    • A convergent neural state estimator for nonlinear stochastic systems
    • Tampa, FL
    • A. Alessandri, T. Parisini, and R. Zoppoli, "A convergent neural state estimator for nonlinear stochastic systems," in Proc. 37th IEEE Conf. Decision Contr., Tampa, FL, 1998, pp. 1076-1081.
    • (1998) Proc. 37th IEEE Conf. Decision Contr. , pp. 1076-1081
    • Alessandri, A.1    Parisini, T.2    Zoppoli, R.3
  • 20
    • 0024731272 scopus 로고
    • Observability of systems under uncertainty
    • J. P. Aubin and H. Frankowska, "Observability of systems under uncertainty," SIAM J. Contr. Optimiz., vol. 27, pp. 949-975, 1989.
    • (1989) SIAM J. Contr. Optimiz. , vol.27 , pp. 949-975
    • Aubin, J.P.1    Frankowska, H.2
  • 21
    • 0015316978 scopus 로고
    • On the observability of nonlinear systems with applications to nonlinear regression analysis
    • J. M. Fitts, "On the observability of nonlinear systems with applications to nonlinear regression analysis," Inform. Sci., vol. 4, pp. 129-156, 1972.
    • (1972) Inform. Sci. , vol.4 , pp. 129-156
    • Fitts, J.M.1
  • 23
    • 0026953356 scopus 로고
    • Feedback stabilization using two-hidden-layer nets
    • E. D. Sontag, "Feedback stabilization using two-hidden-layer nets," IEEE Trans. Neural Networks, vol. 3, pp. 981-990, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 981-990
    • Sontag, E.D.1
  • 24
    • 0003012587 scopus 로고
    • Neural networks for control
    • H. Trentelman and J. Willems, Eds. Boston: Birkhäuser
    • _, "Neural networks for control," in Essays on Control: Perspectives in the Theory and Its Applications, H. Trentelman and J. Willems, Eds. Boston: Birkhäuser, 1993, pp. 339-380.
    • (1993) Essays on Control: Perspectives in the Theory and Its Applications , pp. 339-380
  • 25
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 26
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. Ya, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Ya, V.2    Pinkus, A.3    Schocken, S.4
  • 27
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 28
    • 33746976401 scopus 로고
    • Regularization theory, radial basis functions and networks
    • From Statistics to Neural Networks. Theory and Pattern Recognition Applications, J. H. Friedman, V. Cherkassky, and H. Wechsler, Eds., Subseries F, Berlin: Springer-Verlag
    • F. Girosi, "Regularization theory, radial basis functions and networks," in From Statistics to Neural Networks. Theory and Pattern Recognition Applications, J. H. Friedman, V. Cherkassky, and H. Wechsler, Eds., Subseries F, Computer and Systems Sciences. Berlin: Springer-Verlag, 1993.
    • (1993) Computer and Systems Sciences
    • Girosi, F.1
  • 29
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training," Ann. Stat., vol. 20, pp. 608-613, 1992.
    • (1992) Ann. Stat. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 30
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman, "Hinging hyperplanes for regression, classification, and function approximation," IEEE Trans. Inform. Theory, vol. 39, pp. 993-1013, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 993-1013
    • Breiman, L.1
  • 31
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Computation, vol. 7, pp. 219-269, 1995.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 33
    • 0002678121 scopus 로고
    • Neural net approximation
    • K. Narendra, Ed. New Haven, CT: Yale University Press
    • A. R. Barron, "Neural net approximation," in Proc. 7th Yale Workshop Adaptive Learning Syst., K. Narendra, Ed. New Haven, CT: Yale University Press, 1992.
    • (1992) Proc. 7th Yale Workshop Adaptive Learning Syst.
    • Barron, A.R.1
  • 34
    • 0029341524 scopus 로고
    • Sup-norm approximation bounds for networks through probabilistic methods
    • J. E. Yukich, M. B. Stinchcombe, and H. White, "Sup-norm approximation bounds for networks through probabilistic methods," IEEE Trans. Inform. Theory, vol. 41, pp. 1021-1027, 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 1021-1027
    • Yukich, J.E.1    Stinchcombe, M.B.2    White, H.3
  • 35
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • R. J. Mammone, Ed. London: Chapman & Hall
    • F. Girosi and G. Anzellotti, "Rates of convergence for radial basis functions and neural networks," in Artificial Neural Networks for Speech and Vision, R. J. Mammone, Ed. London: Chapman & Hall, 1993, pp. 97-113.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.