메뉴 건너뛰기




Volumn 2, Issue 4, 2008, Pages 153-176

Approximation error bounds via rademacher's complexity

Author keywords

Approximation error; Curse of dimension ality; Model complexity; Rademacher's complexity; Talagrand's inequality; Union bounds; VC di mension

Indexed keywords


EID: 57649240046     PISSN: 1312885X     EISSN: 13147552     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (39)

References (35)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A. R Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. on Information Theory, 39 (1993), 930-945.
    • (1993) IEEE Trans. on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 2
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and func-tion approximation
    • L. Breiman, Hinging hyperplanes for regression, classification, and func-tion approximation, IEEE Trans. on Information Theory, 39 (1993), 993-1013.
    • (1993) IEEE Trans. on Information Theory , vol.39 , pp. 993-1013
    • Breiman, L.1
  • 3
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Annals of Statistics, 20 (1992), 608-613.
    • (1992) Annals of Statistics , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 4
    • 0003085388 scopus 로고
    • Rates of convergence for Radial Basis Functions and neural networks
    • R. J. Mammone, editor, Chapman & Hall, London
    • F. Girosi and G. Anzellotti, Rates of convergence for Radial Basis Func-tions and neural networks, in Artificial Neural Networks for Speech and Vision, R. J. Mammone, editor, 97-113, Chapman & Hall, London, 1993.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2
  • 5
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • V. Kůrková and M. Sanguineti, Comparison of worst case errors in linear and neural network approximation, IEEE Trans. on Information Theory, 48 (2002), 264-275.
    • (2002) IEEE Trans. on Information Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 6
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • V. Kůrková and M. Sanguineti, Learning with generalization capability by kernel methods of bounded complexity, J. of Complexity, 21 (2005), 350-367.
    • (2005) J. of Complexity , vol.21 , pp. 350-367
    • Kůrková, V.1    Sanguineti, M.2
  • 7
    • 0036115636 scopus 로고    scopus 로고
    • Approximating networks and extended Ritz method for the solution of functional optimization prob-lems
    • R. Zoppoli, M. Sanguineti, and T. Parisini, Approximating networks and extended Ritz method for the solution of functional optimization prob-lems, J. of Optimization Theory and Applications, 112 (2002), 403-440.
    • (2002) J. of Optimization Theory and Applications , vol.112 , pp. 403-440
    • Zoppoli, R.1    Sanguineti, M.2    Parisini, T.3
  • 8
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimiza-tion by the extended Ritz method
    • V. Kůrková and M. Sanguineti, Error estimates for approximate optimiza-tion by the extended Ritz method, SIAM J. on Optimization, 15 (2005), 461-487.
    • (2005) SIAM J. on Optimization , vol.15 , pp. 461-487
    • Kůrková, V.1    Sanguineti, M.2
  • 11
    • 34447618695 scopus 로고    scopus 로고
    • Extending Girosi's approx-imation estimates for functions in Sobolev spaces via Statistical Learning Theory
    • M. A. Kon, L. A. Raphael, and D. A Williams, Extending Girosi's approx-imation estimates for functions in Sobolev spaces via Statistical Learning Theory, J. of Analysis and Applications, 3(2) (2005), 67-90.
    • (2005) J. of Analysis and Applications , vol.3 , Issue.2 , pp. 67-90
    • Kon, M.A.1    Raphael, L.A.2    Williams, D.A.3
  • 12
    • 84856943259 scopus 로고    scopus 로고
    • Approximating functions in reproduc-ing kernel Hilbert spaces via Statistical Learning Theory
    • G. Chen and M. J. Lai, editors, Nashboro Press, Nashville, TN
    • M. A. Kon and L. A Raphael, Approximating functions in reproduc-ing kernel Hilbert spaces via Statistical Learning Theory, in Wavelets and Splines, G. Chen and M. J. Lai, editors, 271-286, Nashboro Press, Nashville, TN, 2006.
    • (2006) Wavelets and Splines , pp. 271-286
    • Kon, M.A.1    Raphael, L.A.2
  • 13
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, Theory of reproducing kernels, Trans. of AMS, 68 (1950), 337-404.
    • (1950) Trans. of AMS , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 14
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • F. Cucker and S. Smale, On the mathematical foundations of learning, Bulletin of AMS, 39 (2001), 1-49.
    • (2001) Bulletin of AMS , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 16
    • 35248851077 scopus 로고    scopus 로고
    • A few notes on Statistical Learning Theory
    • Mendelson, S. and Smola, A., editors, Springer
    • S. Mendelson, A few notes on Statistical Learning Theory, in Advanced Lectures on Machine Learning-LNCS 2600, Mendelson, S. and Smola, A., editors, 1-40, Springer, 2003.
    • (2003) Advanced Lectures on Machine Learning-LNCS 2600 , pp. 1-40
    • Mendelson, S.1
  • 17
    • 0001957366 scopus 로고
    • Sharper bounds for Gaussian and empirical processes
    • M. Talagrand, Sharper bounds for Gaussian and empirical processes, An-nals of Probability, 22 (1994), 20-76.
    • (1994) An-nals of Probability , vol.22 , pp. 20-76
    • Talagrand, M.1
  • 19
    • 0000989054 scopus 로고    scopus 로고
    • Metric entropy of convex hulls in Banach spaces
    • B. Carl, I. Kyrezi, and A. Pajor, Metric entropy of convex hulls in Banach spaces, J. London Math. Soc., 60 (1999), 871-896.
    • (1999) J. London Math. Soc , vol.60 , pp. 871-896
    • Carl, B.1    Kyrezi, I.2    Pajor, A.3
  • 21
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random vari-ables
    • W. Hoefding, Probability inequalities for sums of bounded random vari-ables, J. of the American Statistical Association, 53 (1963), 13-30.
    • (1963) J. of the American Statistical Association , vol.53 , pp. 13-30
    • Hoefding, W.1
  • 22
    • 0031176507 scopus 로고    scopus 로고
    • Scale sensitive dimensions, uniform convergence and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler, Scale sensitive dimensions, uniform convergence and learnability, J. of the ACM, 4 (1997), 615-631.
    • (1997) J. of the ACM , vol.4 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 24
    • 0001452178 scopus 로고
    • Theory of Bessel potentials-Part I
    • (Also: Technical Report 22-O±ce of Naval Research, Lawrence, Kansas, 1959)
    • N. Aronszajn and K. T. Smith, Theory of Bessel potentials-Part I, Ann. Inst. Fourier, 11 (1961), 385-475 (Also: Technical Report 22-O±ce of Naval Research, Lawrence, Kansas, 1959).
    • (1961) Ann. Inst. Fourier , vol.11 , pp. 385-475
    • Aronszajn, N.1    Smith, K.T.2
  • 26
    • 72149094421 scopus 로고    scopus 로고
    • Strongly elliptic operators for a plane wave di®raction prob-lem in Bessel potential spaces
    • L. P. Castro, Strongly elliptic operators for a plane wave di®raction prob-lem in Bessel potential spaces, J. of Inequalities in Pure and Applied Mathematics, 3 (2002), 2, Article 25.
    • (2002) J. of Inequalities in Pure and Applied Mathematics , vol.3 , pp. 2
    • Castro, L.P.1
  • 28
    • 0009846660 scopus 로고    scopus 로고
    • VC dimension of neural networks
    • C. Bishop, editor, Springer-Verlag, Berlin
    • E. Sontag, VC dimension of neural networks, in Neural Networks and Ma-chine Learning, C. Bishop, editor, 69-95, Springer-Verlag, Berlin, 1998.
    • (1998) Neural Networks and Ma-chine Learning , pp. 69-95
    • Sontag, E.1
  • 29
    • 0028424688 scopus 로고
    • Dimension independent bounds on the degree of approximation by neural networks
    • H. N. Mhaskar and C. A. Micchelli, Dimension independent bounds on the degree of approximation by neural networks, IBM J. of Research and Development, 38 (1994), 277-284.
    • (1994) IBM J. of Research and Development , vol.38 , pp. 277-284
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 31
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H. N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Computation, 8 (1996), 164-177.
    • (1996) Neural Computation , vol.8 , pp. 164-177
    • Mhaskar, H.N.1
  • 33
    • 84953248105 scopus 로고    scopus 로고
    • http://www.cs.berkeley.edu/~bartlett/courses/281b-sp06/lecture24.ps.
  • 34
    • 84953288990 scopus 로고    scopus 로고
    • http://ocw.mit.edu/OcwWeb/Mathematics/18-465Spring-2004/LectureNotes/index.htm.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.