-
1
-
-
0019026723
-
Multimembership and multiperspective classification: Introduction, applications, and a Bayesian model
-
M. Ben-Bassat, "Multimembership and multiperspective classification: Introduction, applications, and a Bayesian model," IEEE Trans. Syst., Man, Cybern., vol. SMC-10, pp. 331-336, 1980.
-
(1980)
IEEE Trans. Syst., Man, Cybern.
, vol.SMC-10
, pp. 331-336
-
-
Ben-Bassat, M.1
-
2
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra, "A maximum entropy approach to natural language processing," Comput. Linguist., vol. 22, pp. 39-68, 1996.
-
(1996)
Comput. Linguist.
, vol.22
, pp. 39-68
-
-
Berger, A.L.1
Della Pietra, S.A.2
Della Pietra, V.J.3
-
3
-
-
0039786827
-
Maximum entropy and learning theory
-
G. Bilbro and D. Van den Bout, "Maximum entropy and learning theory," Neural Comp., vol. 4, pp. 839-853, 1992.
-
(1992)
Neural Comp.
, vol.4
, pp. 839-853
-
-
Bilbro, G.1
Van Den Bout, D.2
-
4
-
-
33745834241
-
-
Univ. of Cal., Irvine, Dept. of Information and Computer Sciences
-
C. Blake, E. Keogh, and C. J. Merz, "UCI repository of machine learning databases, 1998," Univ. of Cal., Irvine, Dept. of Information and Computer Sciences, http://www.ics.uci.edu/∼mlearn/MLRepository.html.
-
UCI Repository of Machine Learning Databases, 1998
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
5
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, pp. 123-140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0027629328
-
Vector quantization with complexity costs
-
J. Buhmann and H. Kuhnel, "Vector quantization with complexity costs," IEEE Trans. Inform. Theory, vol. 39, pp. 1133-1145, 1994.
-
(1994)
IEEE Trans. Inform. Theory
, vol.39
, pp. 1133-1145
-
-
Buhmann, J.1
Kuhnel, H.2
-
7
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
W. Buntine, "A guide to the literature on learning probabilistic networks from data," IEEE Trans. Knowl. Data Eng., vol. 8, pp. 195-210, 1996.
-
(1996)
IEEE Trans. Knowl. Data Eng.
, vol.8
, pp. 195-210
-
-
Buntine, W.1
-
8
-
-
0004147631
-
-
Ph.D. dissertation, Dept. of Geophysics, Stanford Univ., Stanford, CA
-
J. P. Burg, "Maximum entropy spectral analysis," Ph.D. dissertation, Dept. of Geophysics, Stanford Univ., Stanford, CA, 1975.
-
(1975)
Maximum Entropy Spectral Analysis
-
-
Burg, J.P.1
-
9
-
-
85153936556
-
Learning many related tasks at the same time with back propagation
-
R. Caruana, "Learning many related tasks at the same time with back propagation," in NIPS 7, 1995, pp. 657-664.
-
(1995)
NIPS 7
, pp. 657-664
-
-
Caruana, R.1
-
10
-
-
0020879288
-
A method of computing generalized Bayesian probability values for expert systems
-
P. Cheeseman, "A method of computing generalized Bayesian probability values for expert systems," in Proc. 8th Int. Joint Conf. A1, vol. 1, 1983, pp. 198-202.
-
(1983)
Proc. 8th Int. Joint Conf. A1
, vol.1
, pp. 198-202
-
-
Cheeseman, P.1
-
11
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow and C. Liu, "Approximating discrete probability distributions with dependence trees," IEEE Trans. Inform. Theory, vol. IT-14, pp. 462-467, 1968.
-
(1968)
IEEE Trans. Inform. Theory
, vol.IT-14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
12
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits, "A Bayesian method for the induction of probabilistic networks from data," Mach. Learning, vol. 9, pp. 309-347, 1992.
-
(1992)
Mach. Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
14
-
-
0031361611
-
Machine-learning research: Four current directions
-
Winter
-
T. G. Dietterich, "Machine-learning research: Four current directions," AI Mag., pp. 97-136, Winter 1997.
-
(1997)
AI Mag.
, pp. 97-136
-
-
Dietterich, T.G.1
-
15
-
-
85105809948
-
Inductive learning algorithms and representations for text categorization
-
S. Dumais, J. Platt, D. Heckerman, and M. Sahami, "Inductive learning algorithms and representations for text categorization," in Proc. Conf. Info. and Knowl. Manag., 1998.
-
(1998)
Proc. Conf. Info. and Knowl. Manag.
-
-
Dumais, S.1
Platt, J.2
Heckerman, D.3
Sahami, M.4
-
16
-
-
0030359493
-
Building classifiers using Bayesian networks
-
N. Friedman and M. Goldszmidt, "Building classifiers using Bayesian networks," in Proc. National Conf. A1, vol. 2, 1996, pp. 1277-1284.
-
(1996)
Proc. National Conf. A1
, vol.2
, pp. 1277-1284
-
-
Friedman, N.1
Goldszmidt, M.2
-
17
-
-
0029273441
-
Applying Bayesian networks to information retrieval
-
R. Fung and B. D. Favero, "Applying Bayesian networks to information retrieval," Commun. ACM, vol. 38, no. 3, pp. 42-48, 1995.
-
(1995)
Commun. ACM
, vol.38
, Issue.3
, pp. 42-48
-
-
Fung, R.1
Favero, B.D.2
-
18
-
-
33749918343
-
Automatic probabilistic knowledge acquisition from data
-
W. B. Gevarter, "Automatic probabilistic knowledge acquisition from data,", NASA Tech. Mem. 88224, 1986.
-
(1986)
NASA Tech. Mem. 88224
-
-
Gevarter, W.B.1
-
20
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, A. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data," Mach. Learning, vol. 20, pp. 197-243, 1995.
-
(1995)
Mach. Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, A.2
Chickering, D.M.3
-
21
-
-
0029276284
-
Decision-theoretic troubleshooting
-
D. E. Heckerman, J. S. Breese, and K. Rommelse, "Decision-theoretic troubleshooting," Commun. ACM, vol. 38, pp. 49-57, 1995.
-
(1995)
Commun. ACM
, vol.38
, pp. 49-57
-
-
Heckerman, D.E.1
Breese, J.S.2
Rommelse, K.3
-
22
-
-
0026636089
-
Toward normative expert systems - Part 1: The Pathfinder project
-
D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani, "Toward normative expert systems - Part 1: The Pathfinder project," Methods Info. Med., vol. 31, pp. 90-105, 1992.
-
(1992)
Methods Info. Med.
, vol.31
, pp. 90-105
-
-
Heckerman, D.E.1
Horvitz, E.J.2
Nathwani, B.N.3
-
23
-
-
0012062308
-
Kutato: An entropy-driven system for construction of probabilistic expert systems from databases
-
E. Herskovits and G. Cooper, "Kutato: An entropy-driven system for construction of probabilistic expert systems from databases," in Proc. Uncertainty in AI 6, 1991, pp. 117-125.
-
(1991)
Proc. Uncertainty in AI 6
, pp. 117-125
-
-
Herskovits, E.1
Cooper, G.2
-
24
-
-
0031351694
-
Proactive network fault detection
-
C. S. Hood and C. Ji, "Proactive network fault detection," in Proc, IEEE INFOCOM, 1997, pp. 1147-1155.
-
(1997)
Proc, IEEE INFOCOM
, pp. 1147-1155
-
-
Hood, C.S.1
Ji, C.2
-
26
-
-
0001566920
-
Approximating discrete probability distributions
-
H. H. Ku and S. Kullback, "Approximating discrete probability distributions," IEEE Trans. Inform. Theory, vol. IT-15, no. 4, pp. 444-447, 1969.
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-15
, Issue.4
, pp. 444-447
-
-
Ku, H.H.1
Kullback, S.2
-
27
-
-
84898959728
-
Estimating dependency structure as a hidden variable
-
M. Meila and M. I. Jordan, "Estimating dependency structure as a hidden variable," in Proc. NIPS 10, 1998, pp. 584-590.
-
(1998)
Proc. NIPS 10
, pp. 584-590
-
-
Meila, M.1
Jordan, M.I.2
-
28
-
-
0030412880
-
A global optimization technique for statistical classifier design
-
D. J. Miller, A. V. Rao, K. Rose, and A. Gersho, "A global optimization technique for statistical classifier design," IEEE Trans. Signal Processing, vol. 44, no. 12, pp. 3108-3122, 1996.
-
(1996)
IEEE Trans. Signal Processing
, vol.44
, Issue.12
, pp. 3108-3122
-
-
Miller, D.J.1
Rao, A.V.2
Rose, K.3
Gersho, A.4
-
29
-
-
33749926300
-
Approximate maximum entropy joint feature inference consistent with arbitrary lower order probability constraints: Application to statistical classification
-
to be published
-
D. J. Miller and L. Yan, "Approximate maximum entropy joint feature inference consistent with arbitrary lower order probability constraints: Application to statistical classification," Neural Computat., 1999, to be published.
-
(1999)
Neural Computat.
-
-
Miller, D.J.1
Yan, L.2
-
30
-
-
0033316240
-
Approximate maximum entropy joint feature inference for discrete space classification
-
D. J. Miller and L. Yan, "Approximate maximum entropy joint feature inference for discrete space classification," in Proc. Int. Joint Conf. Neural Networks, 1999, pp. 1419-1424.
-
(1999)
Proc. Int. Joint Conf. Neural Networks
, pp. 1419-1424
-
-
Miller, D.J.1
Yan, L.2
-
31
-
-
33749932917
-
An approximate maximum entropy method for feature inference: Relation to other maximum entropy methods and to naive Bayes
-
J. Miller and L. Yan, "An approximate maximum entropy method for feature inference: Relation to other maximum entropy methods and to naive Bayes," in Princeton Conf. Information Sciences and Systems, 2000, pp. 1-6.
-
(2000)
Princeton Conf. Information Sciences and Systems
, pp. 1-6
-
-
Miller, J.1
Yan, L.2
-
33
-
-
0027591477
-
Connectionist approach to diagnostic problem solving using causal networks
-
J. A. Reggia, Y. Peng, and S. Tuhrim, "Connectionist approach to diagnostic problem solving using causal networks," Inform. Sci., vol. 70, pp. 21-40, 1993.
-
(1993)
Inform. Sci.
, vol.70
, pp. 21-40
-
-
Reggia, J.A.1
Peng, Y.2
Tuhrim, S.3
-
35
-
-
84899025015
-
Vector quantization by deterministic annealing
-
K. Rose, E. Gurewitz, and G. C. Fox, "Vector quantization by deterministic annealing," IEEE Trans. Inform. Theory, vol. 38, pp. 1249-1257, 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 1249-1257
-
-
Rose, K.1
Gurewitz, E.2
Fox, G.C.3
-
36
-
-
0018877134
-
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
-
J. E. Shore and R. W. Johnson, "Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy," IEEE Trans. Inform. Theory, vol. IT-26, pp. 26-37, 1980.
-
(1980)
IEEE Trans. Inform. Theory
, vol.IT-26
, pp. 26-37
-
-
Shore, J.E.1
Johnson, R.W.2
-
38
-
-
0003838134
-
-
J. Skilling, Ed., Amsterdam, The Netherlands: Kluwer
-
J. Skilling, Ed., Maximum Entropy and Bayesian Methods. Amsterdam, The Netherlands: Kluwer, 1988.
-
(1988)
Maximum Entropy and Bayesian Methods
-
-
-
39
-
-
0026902042
-
An information theoretic approach to rule induction from databases
-
P. Smyth and R. M. Goodman, "An information theoretic approach to rule induction from databases," IEEE Trans. Knowl. Data Eng., vol. 4, pp. 301-316, 1992.
-
(1992)
IEEE Trans. Knowl. Data Eng.
, vol.4
, pp. 301-316
-
-
Smyth, P.1
Goodman, R.M.2
-
40
-
-
0001899045
-
Improved heterogeneous distance functions
-
D. R. Wilson and T. R. Martinez, "Improved heterogeneous distance functions," J. AI Res., vol. 6, pp. 1-34, 1997.
-
(1997)
J. AI Res.
, vol.6
, pp. 1-34
-
-
Wilson, D.R.1
Martinez, T.R.2
-
41
-
-
0000806445
-
Minimax entropy principle and its application to texture modeling
-
S. C. Zhu, Y. N. Wu, and D. Mumford, "Minimax entropy principle and its application to texture modeling," Neural Comput., vol. 9, no. 8, pp. 1627-1660, 1997.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1627-1660
-
-
Zhu, S.C.1
Wu, Y.N.2
Mumford, D.3
|