메뉴 건너뛰기




Volumn 11, Issue 3, 2000, Pages 558-573

General statistical inference for discrete and mixed spaces by an approximate application of the maximum entropy principle

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUS AND DISCRETE FEATURE SPACES; MAXIMUM ENTROPY; MULTIPLE INFERENCE TASK; PROBABILISTIC EXPERT SYSTEM;

EID: 0034187697     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.846727     Document Type: Article
Times cited : (18)

References (41)
  • 1
    • 0019026723 scopus 로고
    • Multimembership and multiperspective classification: Introduction, applications, and a Bayesian model
    • M. Ben-Bassat, "Multimembership and multiperspective classification: Introduction, applications, and a Bayesian model," IEEE Trans. Syst., Man, Cybern., vol. SMC-10, pp. 331-336, 1980.
    • (1980) IEEE Trans. Syst., Man, Cybern. , vol.SMC-10 , pp. 331-336
    • Ben-Bassat, M.1
  • 2
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra, "A maximum entropy approach to natural language processing," Comput. Linguist., vol. 22, pp. 39-68, 1996.
    • (1996) Comput. Linguist. , vol.22 , pp. 39-68
    • Berger, A.L.1    Della Pietra, S.A.2    Della Pietra, V.J.3
  • 3
    • 0039786827 scopus 로고
    • Maximum entropy and learning theory
    • G. Bilbro and D. Van den Bout, "Maximum entropy and learning theory," Neural Comp., vol. 4, pp. 839-853, 1992.
    • (1992) Neural Comp. , vol.4 , pp. 839-853
    • Bilbro, G.1    Van Den Bout, D.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, pp. 123-140, 1996.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0027629328 scopus 로고
    • Vector quantization with complexity costs
    • J. Buhmann and H. Kuhnel, "Vector quantization with complexity costs," IEEE Trans. Inform. Theory, vol. 39, pp. 1133-1145, 1994.
    • (1994) IEEE Trans. Inform. Theory , vol.39 , pp. 1133-1145
    • Buhmann, J.1    Kuhnel, H.2
  • 7
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • W. Buntine, "A guide to the literature on learning probabilistic networks from data," IEEE Trans. Knowl. Data Eng., vol. 8, pp. 195-210, 1996.
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , pp. 195-210
    • Buntine, W.1
  • 8
    • 0004147631 scopus 로고
    • Ph.D. dissertation, Dept. of Geophysics, Stanford Univ., Stanford, CA
    • J. P. Burg, "Maximum entropy spectral analysis," Ph.D. dissertation, Dept. of Geophysics, Stanford Univ., Stanford, CA, 1975.
    • (1975) Maximum Entropy Spectral Analysis
    • Burg, J.P.1
  • 9
    • 85153936556 scopus 로고
    • Learning many related tasks at the same time with back propagation
    • R. Caruana, "Learning many related tasks at the same time with back propagation," in NIPS 7, 1995, pp. 657-664.
    • (1995) NIPS 7 , pp. 657-664
    • Caruana, R.1
  • 10
    • 0020879288 scopus 로고
    • A method of computing generalized Bayesian probability values for expert systems
    • P. Cheeseman, "A method of computing generalized Bayesian probability values for expert systems," in Proc. 8th Int. Joint Conf. A1, vol. 1, 1983, pp. 198-202.
    • (1983) Proc. 8th Int. Joint Conf. A1 , vol.1 , pp. 198-202
    • Cheeseman, P.1
  • 11
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu, "Approximating discrete probability distributions with dependence trees," IEEE Trans. Inform. Theory, vol. IT-14, pp. 462-467, 1968.
    • (1968) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 12
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits, "A Bayesian method for the induction of probabilistic networks from data," Mach. Learning, vol. 9, pp. 309-347, 1992.
    • (1992) Mach. Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 14
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current directions
    • Winter
    • T. G. Dietterich, "Machine-learning research: Four current directions," AI Mag., pp. 97-136, Winter 1997.
    • (1997) AI Mag. , pp. 97-136
    • Dietterich, T.G.1
  • 16
    • 0030359493 scopus 로고    scopus 로고
    • Building classifiers using Bayesian networks
    • N. Friedman and M. Goldszmidt, "Building classifiers using Bayesian networks," in Proc. National Conf. A1, vol. 2, 1996, pp. 1277-1284.
    • (1996) Proc. National Conf. A1 , vol.2 , pp. 1277-1284
    • Friedman, N.1    Goldszmidt, M.2
  • 17
    • 0029273441 scopus 로고
    • Applying Bayesian networks to information retrieval
    • R. Fung and B. D. Favero, "Applying Bayesian networks to information retrieval," Commun. ACM, vol. 38, no. 3, pp. 42-48, 1995.
    • (1995) Commun. ACM , vol.38 , Issue.3 , pp. 42-48
    • Fung, R.1    Favero, B.D.2
  • 18
    • 33749918343 scopus 로고
    • Automatic probabilistic knowledge acquisition from data
    • W. B. Gevarter, "Automatic probabilistic knowledge acquisition from data,", NASA Tech. Mem. 88224, 1986.
    • (1986) NASA Tech. Mem. 88224
    • Gevarter, W.B.1
  • 20
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, A. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data," Mach. Learning, vol. 20, pp. 197-243, 1995.
    • (1995) Mach. Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, A.2    Chickering, D.M.3
  • 21
  • 22
    • 0026636089 scopus 로고
    • Toward normative expert systems - Part 1: The Pathfinder project
    • D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani, "Toward normative expert systems - Part 1: The Pathfinder project," Methods Info. Med., vol. 31, pp. 90-105, 1992.
    • (1992) Methods Info. Med. , vol.31 , pp. 90-105
    • Heckerman, D.E.1    Horvitz, E.J.2    Nathwani, B.N.3
  • 23
    • 0012062308 scopus 로고
    • Kutato: An entropy-driven system for construction of probabilistic expert systems from databases
    • E. Herskovits and G. Cooper, "Kutato: An entropy-driven system for construction of probabilistic expert systems from databases," in Proc. Uncertainty in AI 6, 1991, pp. 117-125.
    • (1991) Proc. Uncertainty in AI 6 , pp. 117-125
    • Herskovits, E.1    Cooper, G.2
  • 24
    • 0031351694 scopus 로고    scopus 로고
    • Proactive network fault detection
    • C. S. Hood and C. Ji, "Proactive network fault detection," in Proc, IEEE INFOCOM, 1997, pp. 1147-1155.
    • (1997) Proc, IEEE INFOCOM , pp. 1147-1155
    • Hood, C.S.1    Ji, C.2
  • 26
    • 0001566920 scopus 로고
    • Approximating discrete probability distributions
    • H. H. Ku and S. Kullback, "Approximating discrete probability distributions," IEEE Trans. Inform. Theory, vol. IT-15, no. 4, pp. 444-447, 1969.
    • (1969) IEEE Trans. Inform. Theory , vol.IT-15 , Issue.4 , pp. 444-447
    • Ku, H.H.1    Kullback, S.2
  • 27
    • 84898959728 scopus 로고    scopus 로고
    • Estimating dependency structure as a hidden variable
    • M. Meila and M. I. Jordan, "Estimating dependency structure as a hidden variable," in Proc. NIPS 10, 1998, pp. 584-590.
    • (1998) Proc. NIPS 10 , pp. 584-590
    • Meila, M.1    Jordan, M.I.2
  • 28
    • 0030412880 scopus 로고    scopus 로고
    • A global optimization technique for statistical classifier design
    • D. J. Miller, A. V. Rao, K. Rose, and A. Gersho, "A global optimization technique for statistical classifier design," IEEE Trans. Signal Processing, vol. 44, no. 12, pp. 3108-3122, 1996.
    • (1996) IEEE Trans. Signal Processing , vol.44 , Issue.12 , pp. 3108-3122
    • Miller, D.J.1    Rao, A.V.2    Rose, K.3    Gersho, A.4
  • 29
    • 33749926300 scopus 로고    scopus 로고
    • Approximate maximum entropy joint feature inference consistent with arbitrary lower order probability constraints: Application to statistical classification
    • to be published
    • D. J. Miller and L. Yan, "Approximate maximum entropy joint feature inference consistent with arbitrary lower order probability constraints: Application to statistical classification," Neural Computat., 1999, to be published.
    • (1999) Neural Computat.
    • Miller, D.J.1    Yan, L.2
  • 30
    • 0033316240 scopus 로고    scopus 로고
    • Approximate maximum entropy joint feature inference for discrete space classification
    • D. J. Miller and L. Yan, "Approximate maximum entropy joint feature inference for discrete space classification," in Proc. Int. Joint Conf. Neural Networks, 1999, pp. 1419-1424.
    • (1999) Proc. Int. Joint Conf. Neural Networks , pp. 1419-1424
    • Miller, D.J.1    Yan, L.2
  • 31
    • 33749932917 scopus 로고    scopus 로고
    • An approximate maximum entropy method for feature inference: Relation to other maximum entropy methods and to naive Bayes
    • J. Miller and L. Yan, "An approximate maximum entropy method for feature inference: Relation to other maximum entropy methods and to naive Bayes," in Princeton Conf. Information Sciences and Systems, 2000, pp. 1-6.
    • (2000) Princeton Conf. Information Sciences and Systems , pp. 1-6
    • Miller, J.1    Yan, L.2
  • 33
    • 0027591477 scopus 로고
    • Connectionist approach to diagnostic problem solving using causal networks
    • J. A. Reggia, Y. Peng, and S. Tuhrim, "Connectionist approach to diagnostic problem solving using causal networks," Inform. Sci., vol. 70, pp. 21-40, 1993.
    • (1993) Inform. Sci. , vol.70 , pp. 21-40
    • Reggia, J.A.1    Peng, Y.2    Tuhrim, S.3
  • 35
    • 84899025015 scopus 로고
    • Vector quantization by deterministic annealing
    • K. Rose, E. Gurewitz, and G. C. Fox, "Vector quantization by deterministic annealing," IEEE Trans. Inform. Theory, vol. 38, pp. 1249-1257, 1992.
    • (1992) IEEE Trans. Inform. Theory , vol.38 , pp. 1249-1257
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 36
    • 0018877134 scopus 로고
    • Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
    • J. E. Shore and R. W. Johnson, "Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy," IEEE Trans. Inform. Theory, vol. IT-26, pp. 26-37, 1980.
    • (1980) IEEE Trans. Inform. Theory , vol.IT-26 , pp. 26-37
    • Shore, J.E.1    Johnson, R.W.2
  • 38
    • 0003838134 scopus 로고
    • J. Skilling, Ed., Amsterdam, The Netherlands: Kluwer
    • J. Skilling, Ed., Maximum Entropy and Bayesian Methods. Amsterdam, The Netherlands: Kluwer, 1988.
    • (1988) Maximum Entropy and Bayesian Methods
  • 39
    • 0026902042 scopus 로고
    • An information theoretic approach to rule induction from databases
    • P. Smyth and R. M. Goodman, "An information theoretic approach to rule induction from databases," IEEE Trans. Knowl. Data Eng., vol. 4, pp. 301-316, 1992.
    • (1992) IEEE Trans. Knowl. Data Eng. , vol.4 , pp. 301-316
    • Smyth, P.1    Goodman, R.M.2
  • 40
    • 0001899045 scopus 로고    scopus 로고
    • Improved heterogeneous distance functions
    • D. R. Wilson and T. R. Martinez, "Improved heterogeneous distance functions," J. AI Res., vol. 6, pp. 1-34, 1997.
    • (1997) J. AI Res. , vol.6 , pp. 1-34
    • Wilson, D.R.1    Martinez, T.R.2
  • 41
    • 0000806445 scopus 로고    scopus 로고
    • Minimax entropy principle and its application to texture modeling
    • S. C. Zhu, Y. N. Wu, and D. Mumford, "Minimax entropy principle and its application to texture modeling," Neural Comput., vol. 9, no. 8, pp. 1627-1660, 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1627-1660
    • Zhu, S.C.1    Wu, Y.N.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.