메뉴 건너뛰기




Volumn 11, Issue 3, 2000, Pages 697-709

New results on recurrent network training: unifying the algorithms and accelerating convergence

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION THROUGH TIME; CONSTRAINED OPTIMIZATION; ERROR GRADIENT; REAL TIME RECURRENT LEARNING;

EID: 0034186923     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.846741     Document Type: Article
Times cited : (418)

References (53)
  • 1
    • 0028391673 scopus 로고
    • Application of the recurrent multilayer perceptron in modeling complex process dynamics
    • Mar.
    • A. Parlos, K. Chong, and A. Atiya, "Application of the recurrent multilayer perceptron in modeling complex process dynamics," IEEE Trans. Neural Networks, vol. 5, pp. 255-266, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 255-266
    • Parlos, A.1    Chong, K.2    Atiya, A.3
  • 3
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • Mar.
    • J. Connors, D. Martin, and L. Atlas, "Recurrent neural networks and robust time series prediction," IEEE Trans. Neural Networks, vol. 5, pp. 240-254, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 240-254
    • Connors, J.1    Martin, D.2    Atlas, L.3
  • 4
    • 0003031155 scopus 로고
    • Stock price predictions by recurrent multilayer neural network architectures
    • A. Refenes, Ed.. London, U.K., October London Business School
    • D. Bassi, "Stock price predictions by recurrent multilayer neural network architectures," in Proc. Neural Networks in the Capital Markets Conf., A. Refenes, Ed.. London, U.K., October 1995, London Business School, pp. 331-340.
    • (1995) Proc. Neural Networks in the Capital Markets Conf. , pp. 331-340
    • Bassi, D.1
  • 5
    • 0029880174 scopus 로고    scopus 로고
    • Exatraction of rules from discrete-time recurrent neural networks
    • C. Omlin and L. Giles, "Exatraction of rules from discrete-time recurrent neural networks," Neural Networks, vol. 9, no. 1, pp. 41-52, 1996.
    • (1996) Neural Networks , vol.9 , Issue.1 , pp. 41-52
    • Omlin, C.1    Giles, L.2
  • 6
    • 0028401031 scopus 로고
    • Neurocontrol of dynamical systems with Kalman filter trained recurrent networks
    • Mar.
    • G. Puskorius and L. Feldman, "Neurocontrol of dynamical systems with Kalman filter trained recurrent networks," IEEE Trans. Neural Networks, vol. 5, pp. 279-297, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.1    Feldman, L.2
  • 7
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • K. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks, "IEEE Trans. Neural Networks, vol. 1, pp. 4-27, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 8
    • 0029342651 scopus 로고
    • Nonlinear system identification using neural state-space models, applicable to robust control design
    • J. Suykens, B. De Moor, and J. Vandewalle, "Nonlinear system identification using neural state-space models, applicable to robust control design," Int. J. Contr., vol. 62, no. 1, pp. 129-152, 1995.
    • (1995) Int. J. Contr. , vol.62 , Issue.1 , pp. 129-152
    • Suykens, J.1    De Moor, B.2    Vandewalle, J.3
  • 10
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 13
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Oct.
    • P. Werbos, "Backpropagation through time: What it does and how to do it," Proc. IEEE, vol. 78, Oct. 1990.
    • (1990) Proc. IEEE , vol.78
    • Werbos, P.1
  • 14
    • 0001202597 scopus 로고
    • Learning state-space trajectories in recurrent neural networks
    • B. Pearlmutter, "Learning state-space trajectories in recurrent neural networks," Neural Comput., vol. 1, pp. 263-269, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 263-269
    • Pearlmutter, B.1
  • 16
    • 0026685372 scopus 로고
    • Learning a trajectory using adjoint functions and teacher forcing
    • _, "Learning a trajectory using adjoint functions and teacher forcing," Neural Networks, vol. 5, no. 3, pp. 473-484, 1992.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 473-484
  • 17
    • 0000651310 scopus 로고
    • Green's function method for fast on-line learning algorithm of recurrent neural networks
    • G.-Z. Sun, H.-H. Chen, and Y.-C. Lee, "Green's function method for fast on-line learning algorithm of recurrent neural networks," Advances Neural Inform. Processing Syst. 4, pp. 333-340, 1992.
    • (1992) Advances Neural Inform. Processing Syst. 4 , pp. 333-340
    • Sun, G.-Z.1    Chen, H.-H.2    Lee, Y.-C.3
  • 18
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks," Neural Comput., vol. 4, no. 2, pp. 243-248, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.1
  • 20
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Hillsdale, NJ: Lawrence Erlbaum
    • R. Williams and J. Peng, "Gradient-based learning algorithms for recurrent networks and their computational complexity," in Backpropagation: Theory, Architectures, and Applications. Hillsdale, NJ: Lawrence Erlbaum, 1992.
    • (1992) Backpropagation: Theory, Architectures, and Applications
    • Williams, R.1    Peng, J.2
  • 21
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • _, "An efficient gradient-based algorithm for on-line training of recurrent network trajectories," Neural Comput., vol. 2, pp. 490-501, 1990.
    • (1990) Neural Comput. , vol.2 , pp. 490-501
  • 22
    • 0000647608 scopus 로고    scopus 로고
    • Extended Kalman filter-based pruning method for recurrent neural networks
    • J. Sum, L. Chan, C. Leung, and G. Young, "Extended Kalman filter-based pruning method for recurrent neural networks," Neural Comput., vol. 10, no. 6, pp. 1481-1506, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.6 , pp. 1481-1506
    • Sum, J.1    Chan, L.2    Leung, C.3    Young, G.4
  • 23
    • 0031675929 scopus 로고    scopus 로고
    • Fast training of recurrent networks based on EM-algorithm
    • Jan.
    • S. Ma and C. Ji, "Fast training of recurrent networks based on EM-algorithm," IEEE Trans. Neural Networks, vol. 9, pp. 11-26, Jan. 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 11-26
    • Ma, S.1    Ji, C.2
  • 24
    • 0032137214 scopus 로고    scopus 로고
    • A unified approach on fast training of feedforward and recurrent networks using EM algorithm
    • Aug.
    • S. Ma and C. Ji, "A unified approach on fast training of feedforward and recurrent networks using EM algorithm," Trans. Signal Processing, vol. 46, pp. 2270-2274, Aug. 1998.
    • (1998) Trans. Signal Processing , vol.46 , pp. 2270-2274
    • Ma, S.1    Ji, C.2
  • 25
    • 0008554931 scopus 로고
    • A focused back-propagation algorithm for temporal sequence recognition
    • M. Mozer, "A focused back-propagation algorithm for temporal sequence recognition," Complex Syst., vol. 3, pp. 349-381, 1989.
    • (1989) Complex Syst. , vol.3 , pp. 349-381
    • Mozer, M.1
  • 27
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • Nov.
    • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.
    • (1997) Neural Comput. , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 28
    • 0000599735 scopus 로고
    • Dynamics and architecture for neural computation
    • F. Pineda, "Dynamics and architecture for neural computation," J. Complexity, vol. 4, pp. 216-245, 1988.
    • (1988) J. Complexity , vol.4 , pp. 216-245
    • Pineda, F.1
  • 29
    • 0023563286 scopus 로고
    • A learning rule for asynchronous perceptrons with feedback in a combinatotrial environment
    • San Diego, CA
    • L. Almeida, "A learning rule for asynchronous perceptrons with feedback in a combinatotrial environment," in Proc. IEEE 1st Int. Conf. Neural Networks, vol. 2, San Diego, CA, 1987, pp. 609-618.
    • (1987) Proc. IEEE 1st Int. Conf. Neural Networks , vol.2 , pp. 609-618
    • Almeida, L.1
  • 30
    • 0023579544 scopus 로고
    • Learning on a general network
    • D. Anderson, Ed. New York: Amer. Inst. Physics
    • A. Atiya, "Learning on a general network," in Neural Inform. Processing Syst., D. Anderson, Ed. New York: Amer. Inst. Physics, 1988.
    • (1988) Neural Inform. Processing Syst.
    • Atiya, A.1
  • 31
    • 33749969637 scopus 로고
    • Unifying recurrent network training algorithms
    • Portland, OR, Jul.
    • A. Atiya and A. Parlos, "Unifying recurrent network training algorithms," in Proc. World Congr. Neural Networks, Portland, OR, Jul. 1993.
    • (1993) Proc. World Congr. Neural Networks
    • Atiya, A.1    Parlos, A.2
  • 32
    • 0029183826 scopus 로고
    • Gradient descent learning algorithms: Ageneral overview
    • Jan.
    • P. Baldi, "Gradient descent learning algorithms: Ageneral overview," IEEE Trans. Neural Networks, vol. 6, pp. 182-195, Jan. 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 182-195
    • Baldi, P.1
  • 33
    • 0029375851 scopus 로고
    • Gradient calculation for dynamic recurrent neural networks - A survey
    • Sept.
    • B. Pearlmutter, "Gradient calculation for dynamic recurrent neural networks - A survey," IEEE Trans. Neural Networks, vol. 6, pp. 1212-1228, Sept. 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 1212-1228
    • Pearlmutter, B.1
  • 34
    • 0344517421 scopus 로고
    • Time dependent adaptive neural networks
    • D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • F. Pineda, "Time dependent adaptive neural networks," in Advances in Neural Information Processing Systems, 2, D. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 710-718.
    • (1990) Advances in Neural Information Processing Systems, 2 , pp. 710-718
    • Pineda, F.1
  • 35
    • 0000105056 scopus 로고
    • Relating real-time backpropagation and backpropagation-through-time: An application of flow graph interreciprocity
    • F. Beaufays and E. Wan, "Relating real-time backpropagation and backpropagation-through-time: An application of flow graph interreciprocity," Neural Comput., vol. 6, pp. 296-306, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 296-306
    • Beaufays, F.1    Wan, E.2
  • 36
    • 0001317823 scopus 로고    scopus 로고
    • Diagrammatic derivation of gradient algorithms forneural networks
    • E. Wan and F. Beaufays, "Diagrammatic derivation of gradient algorithms forneural networks," Neural Comput., vol. 8, pp. 182-201, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 182-201
    • Wan, E.1    Beaufays, F.2
  • 38
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks - A critical review of architectures
    • Mar.
    • A. Tsoi and A. Back, "Locally recurrent globally feedforward networks - A critical review of architectures," IEEE Trans. Neural Networks, vol. 5, pp. 229-239, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 229-239
    • Tsoi, A.1    Back, A.2
  • 39
    • 0141690089 scopus 로고
    • Identification of nonlinear dynamics using a general spatio-temporal network
    • Jan.
    • A. Atiya and A. Parlos, "Identification of nonlinear dynamics using a general spatio-temporal network," Math. Comput. Modeling J., vol. 21, no. 1, pp. 53-71, Jan. 1995.
    • (1995) Math. Comput. Modeling J. , vol.21 , Issue.1 , pp. 53-71
    • Atiya, A.1    Parlos, A.2
  • 40
    • 33749930065 scopus 로고
    • Nonlinear system identification using spatio-temporal neural networks
    • Baltimore, MD, June
    • _, "Nonlinear system identification using spatio-temporal neural networks," in Proc. Int. Joint Neural Network Conf., Baltimore, MD, June 1992.
    • (1992) Proc. Int. Joint Neural Network Conf.
  • 41
    • 0025555891 scopus 로고
    • Temporal backprogation for FIR neural networks
    • San Diego, CA
    • E. Wan, "Temporal backprogation for FIR neural networks," in Proc. Int. Joint Conf. Neural Networks, San Diego, CA, 1990, pp. 575-580.
    • (1990) Proc. Int. Joint Conf. Neural Networks , pp. 575-580
    • Wan, E.1
  • 42
    • 0028468031 scopus 로고
    • How delays affect neural dynamics and learning
    • Jul.
    • P. Baldi and A. Atiya, "How delays affect neural dynamics and learning," IEEE Trans. Neural Networks, vol. 5, pp. 612-621, Jul. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 612-621
    • Baldi, P.1    Atiya, A.2
  • 43
    • 0031272071 scopus 로고    scopus 로고
    • q theory: Checking and imposing stability of recurrent neural networks for nonlinear modeling
    • Nov.
    • q theory: Checking and imposing stability of recurrent neural networks for nonlinear modeling," IEEE Trans. Signal Processing, vol. 45, pp. 2682-2691, Nov. 1997.
    • (1997) IEEE Trans. Signal Processing , vol.45 , pp. 2682-2691
    • Suykens, J.1    Vandewalle, J.2    De Moor, B.3
  • 44
    • 0028399792 scopus 로고
    • Memory neuron networks for identification and control of dynamical systems
    • Mar.
    • P. Sastry, G. Santharam, and K. Unnikrishnan, "Memory neuron networks for identification and control of dynamical systems," IEEE Trans. Neural Networks, vol. 5, pp. 305-319, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 305-319
    • Sastry, P.1    Santharam, G.2    Unnikrishnan, K.3
  • 45
    • 0031145983 scopus 로고    scopus 로고
    • Supervised neural networks for the classification of structures
    • Mar.
    • A. Sperduti and A. Starita, "Supervised neural networks for the classification of structures, "IEEE Trans. Neural Networks, vol. 8, pp. 714-735, Mar. 1997.
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 714-735
    • Sperduti, A.1    Starita, A.2
  • 47
    • 0024887294 scopus 로고
    • The truck backer-upper: An example of self learning in neural networks
    • Washington, D.C.
    • C. Nguyen and C. Widrow, "The truck backer-upper: An example of self learning in neural networks," in IEEE/INNS Int. Joint Conf. Neural Networks, vol. 1, Washington, D.C., 1989, pp. 357-364.
    • (1989) IEEE/INNS Int. Joint Conf. Neural Networks , vol.1 , pp. 357-364
    • Nguyen, C.1    Widrow, C.2
  • 48
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques - Case study: River flow forecasting
    • Mar.
    • A. Atiya, S. El-Shoura, S. Shaheen, and M. El-Sherif, "A comparison between neural-network forecasting techniques - Case study: River flow forecasting," IEEE Trans. Neural Networks, vol. 10, pp. 402-409, Mar. 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 402-409
    • Atiya, A.1    El-Shoura, S.2    Shaheen, S.3    El-Sherif, M.4
  • 51
    • 0004151494 scopus 로고
    • Cambridge, U.K.: Cambridge Univ. Press
    • A. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1985.
    • (1985) Matrix Analysis
    • Horn, A.1    Johnson, C.2
  • 53
    • 0033346108 scopus 로고    scopus 로고
    • Training recurrent network with block-diagonal approximated Levenberg-Marquardt algorithm
    • Washington, D.C., July
    • L. Chan, "Training recurrent network with block-diagonal approximated Levenberg-Marquardt algorithm," in Proc. IJCNN'99, Washington, D.C., July 1999.
    • (1999) Proc. IJCNN'99
    • Chan, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.