메뉴 건너뛰기




Volumn 73, Issue 1, 2008, Pages 3-23

Structured machine learning: The next ten years

Author keywords

Inductive logic programming; Relational learning; Statistical relational learning; Structured machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER PROGRAMMING; EDUCATION; LOGIC PROGRAMMING; PROGRAMMING THEORY; ROBOT LEARNING;

EID: 50649102327     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-008-5079-1     Document Type: Article
Times cited : (112)

References (101)
  • 1
    • 34250876925 scopus 로고    scopus 로고
    • A novel logic-based approach for quantitative toxicology prediction
    • doi: 0.1021/ci600223dS1549-9596(60)00223-4
    • Amini, A., Muggleton, S. H. H. L., & Sternberg, M. (2007). A novel logic-based approach for quantitative toxicology prediction. Journal of Chemical Informatics Modelling, 47(3), 998-1006. doi: 0.1021/ci600223dS1549-9596(60) 00223-4.
    • (2007) Journal of Chemical Informatics Modelling , vol.47 , Issue.3 , pp. 998-1006
    • Amini, A.1    Muggleton, S.H.H.L.2    Sternberg, M.3
  • 2
    • 0018447661 scopus 로고
    • The theory of learning by doing
    • Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86, 124-140.
    • (1979) Psychological Review , vol.86 , pp. 124-140
    • Anzai, Y.1    Simon, H.A.2
  • 8
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • Morristown, NJ, USA. Association for Computational Linguistics
    • Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms. In Proceedings of the conference on empirical methods in natural language processing (EMNLP 2002) (pp. 1-8), Morristown, NJ, USA. Association for Computational Linguistics.
    • (2002) Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2002) , pp. 1-8
    • Collins, M.1
  • 10
    • 33748258488 scopus 로고    scopus 로고
    • Mathematical applications of inductive logic programming
    • doi: 10.1007/s10994-006-8259-x
    • Colton, S., & Muggleton, S. (2006). Mathematical applications of inductive logic programming. Machine Learning, 64, 25-64. doi: 10.1007/s10994-006-8259-x.
    • (2006) Machine Learning , vol.64 , pp. 25-64
    • Colton, S.1    Muggleton, S.2
  • 13
    • 84858393901 scopus 로고    scopus 로고
    • First-order probabilistic models for coreference resolution
    • Culotta, A., Wick, M., Hall, R., & McCallum, A. (2007). First-order probabilistic models for coreference resolution. In HLT/NAACL (pp. 81-88).
    • (2007) HLT/NAACL , pp. 81-88
    • Culotta, A.1    Wick, M.2    Hall, R.3    McCallum, A.4
  • 15
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • 3
    • Cussens, J. (2001). Parameter estimation in stochastic logic programs. Machine Learning, 44(3), 245-271.
    • (2001) Machine Learning , vol.44 , pp. 245-271
    • Cussens, J.1
  • 20
    • 0000017646 scopus 로고
    • Explanation-based learning: An alternative view
    • DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1, 145-176.
    • (1986) Machine Learning , vol.1 , pp. 145-176
    • Dejong, G.1    Mooney, R.2
  • 21
  • 26
    • 0002636018 scopus 로고
    • A program for the solution of a class of geometric-analogy intelligence-test questions
    • MIT Press Boston
    • Evans, T. G. (1968). A program for the solution of a class of geometric-analogy intelligence-test questions. In M. Minsky (Ed.), Semantic information processing. Boston: MIT Press.
    • (1968) Semantic Information Processing
    • Evans, T.G.1    Minsky, M.2
  • 27
    • 33750021189 scopus 로고    scopus 로고
    • Sequential inference with reliable observations: Learning to construct force-dynamic models
    • 14-15
    • Fern, A., & Givan, R. (2006). Sequential inference with reliable observations: Learning to construct force-dynamic models. Artificial Intelligence, 170(14-15), 1081-1122.
    • (2006) Artificial Intelligence , vol.170 , pp. 1081-1122
    • Fern, A.1    Givan, R.2
  • 28
    • 33744466799 scopus 로고    scopus 로고
    • Approximate policy iteration with a policy language bias: Solving relational Markov decision processes
    • Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language bias: Solving relational Markov decision processes. Journal of Artificial Intelligence Research, 25, 75-118.
    • (2006) Journal of Artificial Intelligence Research , vol.25 , pp. 75-118
    • Fern, A.1    Yoon, S.2    Givan, R.3
  • 29
    • 0015440625 scopus 로고
    • Learning and executing generalized robot plans
    • Fikes, R., Hart, P., & Nilsson, N. (1972). Learning and executing generalized robot plans. Artificial Intelligence, 3, 251-288.
    • (1972) Artificial Intelligence , vol.3 , pp. 251-288
    • Fikes, R.1    Hart, P.2    Nilsson, N.3
  • 30
    • 0031997218 scopus 로고    scopus 로고
    • Pharmacophore discovery using the Inductive Logic Programming system Progol
    • Finn, P., Muggleton, S., Page, D., & Srinivasan, A. (1998). Pharmacophore discovery using the Inductive Logic Programming system Progol. Machine Learning, 30, 241-271.
    • (1998) Machine Learning , vol.30 , pp. 241-271
    • Finn, P.1    Muggleton, S.2    Page, D.3    Srinivasan, A.4
  • 32
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • 1
    • Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explorations, 5(1), 49-58.
    • (2003) SIGKDD Explorations , vol.5 , pp. 49-58
    • Gärtner, T.1
  • 38
    • 33745805403 scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y.-W. (1993). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (1993) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 42
    • 1642336155 scopus 로고    scopus 로고
    • Functional genomic hypothesis generation and experimentation by a robot scientist
    • King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., & Oliver, S. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, 247-252.
    • (2004) Nature , vol.427 , pp. 247-252
    • King, R.1    Whelan, K.2    Jones, F.3    Reiser, P.4    Bryant, C.5    Muggleton, S.6    Kell, D.7    Oliver, S.8
  • 49
    • 33645954864 scopus 로고    scopus 로고
    • Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish
    • Leathwick, J., Rowe, D., Richardson, J., Elith, J., & Hastie, T. (2005). Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology, 50, 2034-2052.
    • (2005) Freshwater Biology , vol.50 , pp. 2034-2052
    • Leathwick, J.1    Rowe, D.2    Richardson, J.3    Elith, J.4    Hastie, T.5
  • 55
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: A toolkit and a univariate case study
    • Macskassy, S., & Provost, F. (2007). Classification in networked data: A toolkit and a univariate case study. Journal of Machine Learning, 8, 935-983.
    • (2007) Journal of Machine Learning , vol.8 , pp. 935-983
    • MacSkassy, S.1    Provost, F.2
  • 61
    • 77951503082 scopus 로고
    • Inverse entailment and Progol
    • Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245-286.
    • (1995) New Generation Computing , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 64
    • 33645308238 scopus 로고    scopus 로고
    • Exceeding human limits
    • 7083
    • Muggleton, S. (2006). Exceeding human limits. Nature, 440(7083), 409-410.
    • (2006) Nature , vol.440 , pp. 409-410
    • Muggleton, S.1
  • 65
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic Programming, 19, 629-679.
    • (1994) Journal of Logic Programming , vol.19 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 76
    • 0001602577 scopus 로고
    • A note on inductive generalisation
    • Edinburgh University Press Edinburgh
    • Plotkin, G. (1969). A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. 5, pp. 153-163). Edinburgh: Edinburgh University Press.
    • (1969) Machine Intelligence , vol.5 , pp. 153-163
    • Plotkin, G.1    Meltzer, B.2    Michie, D.3
  • 77
    • 0027702434 scopus 로고
    • Probabilistic horn abduction and Bayesian networks
    • 1
    • Poole, D. (1993). Probabilistic horn abduction and Bayesian networks. Artificial Intelligence, 64(1), 81-129.
    • (1993) Artificial Intelligence , vol.64 , pp. 81-129
    • Poole, D.1
  • 79
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.1
  • 84
  • 89
    • 33748281132 scopus 로고    scopus 로고
    • Application of abductive ILP to learning metabolic network inhibition from temporal data
    • doi: 10.1007/s10994-006-8988-x
    • Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S. (2006). Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning, 64, 209-230. doi: 10.1007/s10994-006-8988-x.
    • (2006) Machine Learning , vol.64 , pp. 209-230
    • Tamaddoni-Nezhad, A.1    Chaleil, R.2    Kakas, A.3    Muggleton, S.4
  • 98
    • 0000027741 scopus 로고
    • Learning structural descriptions from examples
    • McGraw Hill New York
    • Winston, P. (1975). Learning structural descriptions from examples. In P. Winston (Ed.), The psychology of computer vision. New York: McGraw Hill.
    • (1975) The Psychology of Computer Vision
    • Winston, P.1    Winston, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.