메뉴 건너뛰기




Volumn 170, Issue 14-15, 2006, Pages 1081-1100

Sequential inference with reliable observations: Learning to construct force-dynamic models

Author keywords

Event recognition; Inductive logic programming; Relational learning; Sequence learning; Temporal learning

Indexed keywords

INDUCTIVE LOGIC PROGRAMMING; INFERENCE ALGORITHMS; RELATIONAL LEARNING; SEQUENCE LEARNING; TEMPORAL LEARNING;

EID: 33750021189     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2006.08.003     Document Type: Article
Times cited : (3)

References (44)
  • 1
    • 0032296361 scopus 로고    scopus 로고
    • A.F. Bobick, Y.A. Ivanov, Action recognition using probabilistic parsing, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, June 1998, pp. 196-202
  • 3
    • 33750034222 scopus 로고    scopus 로고
    • M. Brand, I. Essa, Causal analysis for visual gesture understanding, in: Proceedings of AAAI Fall Symposium on Computational Models for Integrating Language and Vision, 1995
  • 4
    • 0030685285 scopus 로고    scopus 로고
    • M. Brand, N. Oliver, A. Pentland, Coupled hidden Markov models for complex action recognition, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997
  • 5
    • 33750031820 scopus 로고    scopus 로고
    • M. Collins, Discriminative training methods for hidden Markov models: Theory and experiments with the perceptron algorithm, in: Conference on Empirical Methods in Natural Language Processing, 2002
  • 7
    • 33749991468 scopus 로고    scopus 로고
    • L. De Raedt, N. Lavrač, S. Džeroski, Multiple predicate learning, in: International Joint Conference on Artificial Intelligence, 1993
  • 8
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • Dean T., and Kanazawa K. A model for reasoning about persistence and causation. Computational Intelligence 5 3 (1989) 142-150
    • (1989) Computational Intelligence , vol.5 , Issue.3 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 9
    • 0033188982 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for reasoning
    • Dechter R. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113 1-2 (1999)
    • (1999) Artificial Intelligence , vol.113 , Issue.1-2
    • Dechter, R.1
  • 10
    • 33750031621 scopus 로고    scopus 로고
    • T.G. Dietterich, Machine learning for sequential data: A review, in: Proceedings of the Fourth International Workshop on Statistical Techniques in Pattern Recognition, 2002
  • 11
    • 33750019315 scopus 로고    scopus 로고
    • P. Domingos, M. Richardson, Markov logic: A unifying framework for statistical relational learning, in: ICML Workshop on Statistical Relational Learning and its Connections to Other Fields, 2004
  • 12
    • 79851511810 scopus 로고    scopus 로고
    • A. Fern, A simple-transition model for relational sequences, in: International Joint Conference on Artificial Intelligence, 2005
  • 13
    • 10044252615 scopus 로고    scopus 로고
    • Specific-to-general learning for temporal events with application to learning event definitions from video
    • Fern A., Givan R., and Siskind J. Specific-to-general learning for temporal events with application to learning event definitions from video. Journal of Artificial Intelligence Research 17 (2002) 379-449
    • (2002) Journal of Artificial Intelligence Research , vol.17 , pp. 379-449
    • Fern, A.1    Givan, R.2    Siskind, J.3
  • 14
    • 84880688943 scopus 로고    scopus 로고
    • N. Friedman, L. Getoor, D. Koller, A. Pfeffer, Learning probabilistic relational models, in: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999
  • 15
    • 33750006897 scopus 로고    scopus 로고
    • Y. Jiang, H. Kautz, B. Selman, Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT, in: Joint Workshop on Artificial Intelligence and Operations Research, 1995
  • 16
    • 33749998456 scopus 로고    scopus 로고
    • K. Kersting, L. De Raedt, Towards combining inductive logic programming and Bayesian networks, in: Proceedings of the Eleventh International Conference on Inductive Logic Programming, 2001
  • 17
    • 33750024864 scopus 로고    scopus 로고
    • J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data, in: International Conference on Machine Learning, 2001
  • 19
    • 0032296598 scopus 로고    scopus 로고
    • R. Mann, A.D. Jepson, Toward the computational perception of action, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, June 1998, pp. 794-799
  • 20
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton S., and De Raedt L. Inductive logic programming: Theory and methods. Journal of Logic Programming 19/20 (1994) 629-679
    • (1994) Journal of Logic Programming , vol.19-20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 21
    • 77952399122 scopus 로고    scopus 로고
    • J. Neville, D. Jensen, L. Friedland, M. Hay, Learning relational probability trees, in: International Conference on Knowledge Discovery and Data Mining, 2003
  • 24
    • 33750017403 scopus 로고    scopus 로고
    • C. Pinhanez, A. Bobick, Scripts in machine understanding of image sequences, in: AAAI Fall Symposium Series on Computational Models for Integrating Language and Vision, November 1995
  • 25
    • 33750030018 scopus 로고    scopus 로고
    • G. Pinkas, Propositional non-monotonic reasoning and inconsistency in symmetric neural networks, in: Proceedings of the International Joint Conference on Artificial Intelligence, 1991
  • 26
    • 0029368629 scopus 로고
    • Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge
    • Pinkas G. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence 77 2 (1995)
    • (1995) Artificial Intelligence , vol.77 , Issue.2
    • Pinkas, G.1
  • 27
    • 33750005846 scopus 로고    scopus 로고
    • V. Punyakanok, D. Roth, The use of classifiers in sequential inference, in: Neural Information Processing Systems, 2000
  • 28
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan J.R. Learning logical definitions from relations. Machine Learning 5 (1990) 239-266
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, J.R.1
  • 29
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77 2 (1989) 257-286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 30
    • 33750000425 scopus 로고    scopus 로고
    • M. Richardson, P. Domingos, Markov logic networks, Machine Learning, submitted for publication
  • 31
    • 11144273669 scopus 로고
    • The Perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65 (1958) 386-408
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 32
    • 84880816720 scopus 로고    scopus 로고
    • S. Sanghai, P. Domingos, D. Weld, Dynamic probabilistic relational models, in: International Joint Conference on Artificial Intelligence, 2003
  • 33
    • 33749993042 scopus 로고    scopus 로고
    • J.M. Siskind, Visual event classification via force dynamics, in: Proceedings of the Seventeenth National Conference on Artificial Intelligence, Austin, TX, 2000, pp. 149-155
  • 34
    • 0002480013 scopus 로고    scopus 로고
    • Grounding lexical semantics of verbs in visual perception using force dynamics and event logic
    • Siskind J.M. Grounding lexical semantics of verbs in visual perception using force dynamics and event logic. Journal of Artificial Intelligence Research 15 (2001) 31-90
    • (2001) Journal of Artificial Intelligence Research , vol.15 , pp. 31-90
    • Siskind, J.M.1
  • 35
    • 0242270907 scopus 로고    scopus 로고
    • Reconstructing force-dynamic models from video sequences
    • Siskind J.M. Reconstructing force-dynamic models from video sequences. Artificial Intelligence 151 1-2 (2003) 91-154
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 91-154
    • Siskind, J.M.1
  • 37
    • 29344445714 scopus 로고    scopus 로고
    • S. Stumpf, X. Bao, A. Dragunov, T.G. Dietterich, J. Herlocker, K. Johnsrude, L. Li, J. Shen, The tasktracer system, in: National Conference on Artificial Intelligence, Intelligent Systems Demonstrations, 2005
  • 38
    • 34248875622 scopus 로고
    • Force dynamics in language and cognition
    • Talmy L. Force dynamics in language and cognition. Cognitive Science 12 (1988) 49-100
    • (1988) Cognitive Science , vol.12 , pp. 49-100
    • Talmy, L.1
  • 39
    • 33750011648 scopus 로고    scopus 로고
    • L.R. Tang, R.J. Mooney, Automated construction of database interfaces: Integrating statistical and relational learning for semantic parsing, in: Joint Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, 2000
  • 40
    • 33750026514 scopus 로고    scopus 로고
    • B. Taskar, P. Abbeel, D. Koller, Discriminative probabilistic models for relational data, in: Conference on Uncertainty in Artificial Intelligence, 2002
  • 41
    • 0344120278 scopus 로고    scopus 로고
    • A. Torralba, K. Murphy, W. Freeman, M. Rubin, Context-based vision system for place and object recognition, in: International Conference on Computer Vision, 2003


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.