-
1
-
-
0036784224
-
Using genetic programming to learn and improve control knowledge
-
Aler, R., Borrajo, D., & Isasi, P. (2002). Using genetic programming to learn and improve control knowledge. Artificial Intelligence, 141(1-2), 29-56.
-
(2002)
Artificial Intelligence
, vol.141
, Issue.1-2
, pp. 29-56
-
-
Aler, R.1
Borrajo, D.2
Isasi, P.3
-
2
-
-
84880910318
-
Learning plan rewriting rules
-
Ambite, J. L., Knoblock, C. A., & Minton, S. (2000). Learning plan rewriting rules. In Artificial Intelligence Planning Systems, pp. 3-12.
-
(2000)
Artificial Intelligence Planning Systems
, pp. 3-12
-
-
Ambite, J.L.1
Knoblock, C.A.2
Minton, S.3
-
3
-
-
0035442648
-
The AIPS '00 planning competition
-
3
-
Bacchus, F. (2001). The AIPS '00 planning competition. AI Magazine, 22(3)(3), 57-62.
-
(2001)
AI Magazine
, vol.22
, Issue.3
, pp. 57-62
-
-
Bacchus, F.1
-
4
-
-
0033897011
-
Using temporal logics to express search control knowledge for planning
-
Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge for planning. Artificial Intelligence, 16, 123-191.
-
(2000)
Artificial Intelligence
, vol.16
, pp. 123-191
-
-
Bacchus, F.1
Kabanza, F.2
-
5
-
-
84898962948
-
Policy search by dynamic programming
-
Bagnell, J., Kakade, S., Ng, A., & Schneider, J. (2003). Policy search by dynamic programming. In Proceedings of the 16th Conference on Advances in Neural Information Processing.
-
(2003)
Proceedings of the 16th Conference on Advances in Neural Information Processing
-
-
Bagnell, J.1
Kakade, S.2
Ng, A.3
Schneider, J.4
-
9
-
-
0034248853
-
Stochastic dynamic programming with factored representations
-
Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic programming with factored representations. Artificial Intelligence, 121(1-2), 49-107.
-
(2000)
Artificial Intelligence
, vol.121
, Issue.1-2
, pp. 49-107
-
-
Boutilier, C.1
Dearden, R.2
Goldszmidt, M.3
-
12
-
-
0000746330
-
Model reduction techniques for computing approximately optimal solutions for Markov decision processes
-
Dean, T., Givan, R., & Leach, S. (1997). Model reduction techniques for computing approximately optimal solutions for Markov decision processes. In Conference on Uncertainty in Artificial Intelligence, pp. 124-131.
-
(1997)
Conference on Uncertainty in Artificial Intelligence
, pp. 124-131
-
-
Dean, T.1
Givan, R.2
Leach, S.3
-
14
-
-
0035312760
-
Relational reinforcement learning
-
Dzeroski, S., DeRaedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning, 43, 7-52.
-
(2001)
Machine Learning
, vol.43
, pp. 7-52
-
-
Dzeroski, S.1
Deraedt, L.2
Driessens, K.3
-
17
-
-
2542504100
-
A selective macro-learning algorithm and its application to the N×N sliding-tile puzzle
-
Finkelstein, L., & Markovitch, S. (1998). A selective macro-learning algorithm and its application to the N×N sliding-tile puzzle. Journal of Artificial Intelligence Research, 8, 223-263.
-
(1998)
Journal of Artificial Intelligence Research
, vol.8
, pp. 223-263
-
-
Finkelstein, L.1
Markovitch, S.2
-
18
-
-
0038517214
-
Equivalence notions and model minimization in Markov decision processes
-
Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in Markov decision processes. Artificial Intelligence, 147(1-2), 163-223.
-
(2003)
Artificial Intelligence
, vol.147
, Issue.1-2
, pp. 163-223
-
-
Givan, R.1
Dean, T.2
Greig, M.3
-
20
-
-
84880803349
-
Generalizing plans to new environments in relational mdps
-
Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003a). Generalizing plans to new environments in relational mdps. In International Joint Conference on Artificial Intelligence.
-
(2003)
International Joint Conference on Artificial Intelligence
-
-
Guestrin, C.1
Koller, D.2
Gearhart, C.3
Kanodia, N.4
-
21
-
-
4544318426
-
Efficient solution algorithms for factored mdps
-
Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003b). Efficient solution algorithms for factored mdps. Journal of Artificial Intelligence Research, 19, 399-468.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 399-468
-
-
Guestrin, C.1
Koller, D.2
Parr, R.3
Venkataraman, S.4
-
22
-
-
27344447284
-
Ordered landmarks in planning
-
Hoffman, J., Porteous, J., & Sebastia, L. (2004). Ordered landmarks in planning. Journal of Artificial Intelligence Research, 22, 215-278.
-
(2004)
Journal of Artificial Intelligence Research
, vol.22
, pp. 215-278
-
-
Hoffman, J.1
Porteous, J.2
Sebastia, L.3
-
23
-
-
0036377352
-
The FF planning system: Fast plan generation through heuristic search
-
Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research, 14, 263-302.
-
(2001)
Journal of Artificial Intelligence Research
, vol.14
, pp. 263-302
-
-
Hoffmann, J.1
Nebel, B.2
-
25
-
-
8344223155
-
Learning declarative control rules for constraint-based planning
-
Huang, Y.-C., Selman, B., & Kautz, H. (2000). Learning declarative control rules for constraint-based planning. In International Conference on Machine Learning, pp. 415-422.
-
(2000)
International Conference on Machine Learning
, pp. 415-422
-
-
Huang, Y.-C.1
Selman, B.2
Kautz, H.3
-
26
-
-
0036832951
-
A sparse sampling algorithm for near-optimal planning in large markov decision processes
-
Kearns, M. J., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning in large markov decision processes. Machine Learning, 45(2-3), 193-208.
-
(2002)
Machine Learning
, vol.45
, Issue.2-3
, pp. 193-208
-
-
Kearns, M.J.1
Mansour, Y.2
Ng, A.Y.3
-
28
-
-
0033189384
-
Learning action strategies for planning domains
-
Khardon, R. (1999a). Learning action strategies for planning domains. Artificial Intelligence, 113(1-2), 125-148.
-
(1999)
Artificial Intelligence
, vol.113
, Issue.1-2
, pp. 125-148
-
-
Khardon, R.1
-
29
-
-
0032649290
-
Learning to take actions
-
Khardon, R. (1999b). Learning to take actions. Machine Learning, 35(1), 57-90.
-
(1999)
Machine Learning
, vol.35
, Issue.1
, pp. 57-90
-
-
Khardon, R.1
-
34
-
-
0027574520
-
Taxonomic syntax for first order inference
-
McAllester, D., & Givan, R. (1993). Taxonomic syntax for first order inference. Journal of the ACM, 40(2), 246-283.
-
(1993)
Journal of the ACM
, vol.40
, Issue.2
, pp. 246-283
-
-
McAllester, D.1
Givan, R.2
-
36
-
-
0036832961
-
Building a basic block instruction scheduler using reinforcement learning and rollouts
-
McGovern, A., Moss, E., & Barto, A. (2002). Building a basic block instruction scheduler using reinforcement learning and rollouts. Machine Learning, 49(2/3), 141-160.
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 141-160
-
-
McGovern, A.1
Moss, E.2
Barto, A.3
-
37
-
-
84990622495
-
Quantitative results concerning the utility of explanation-based learning
-
Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. In National Conference on Artificial Intelligence.
-
(1988)
National Conference on Artificial Intelligence
-
-
Minton, S.1
-
39
-
-
0024733810
-
Explanation-based learning: A problem solving perspective
-
Minton, S., Carbonell, J., Knoblock, C. A., Kuokka, D. R., Etzioni, O., & Gil, Y. (1989). Explanation-based learning: A problem solving perspective. Artificial Intelligence, 40, 63-118.
-
(1989)
Artificial Intelligence
, vol.40
, pp. 63-118
-
-
Minton, S.1
Carbonell, J.2
Knoblock, C.A.3
Kuokka, D.R.4
Etzioni, O.5
Gil, Y.6
-
42
-
-
1442267080
-
Learning decision lists
-
Rivest, R. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
-
(1987)
Machine Learning
, vol.2
, Issue.3
, pp. 229-246
-
-
Rivest, R.1
-
43
-
-
0001046225
-
Practical issues in temporal difference learning
-
Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning, 8, 257-277.
-
(1992)
Machine Learning
, vol.8
, pp. 257-277
-
-
Tesauro, G.1
-
45
-
-
0029752470
-
Feature-based methods for large scale DP
-
Tsitsiklis, J., & Van Roy, B. (1996). Feature-based methods for large scale DP. Machine Learning, 22, 59-94.
-
(1996)
Machine Learning
, vol.22
, pp. 59-94
-
-
Tsitsiklis, J.1
Van Roy, B.2
-
46
-
-
32144443210
-
Integrating planning and learning: The PRODIGY architecture
-
Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating planning and learning: The PRODIGY architecture. Journal of Experimental and Theoretical AI, 7(1).
-
(1995)
Journal of Experimental and Theoretical AI
, vol.7
, Issue.1
-
-
Veloso, M.1
Carbonell, J.2
Perez, A.3
Borrajo, D.4
Fink, E.5
Blythe, J.6
-
47
-
-
0034997316
-
Congestion control via online sampling
-
Wu, G., Chong, E., & Givan, R. (2001). Congestion control via online sampling. In Infocom.
-
(2001)
Infocom
-
-
Wu, G.1
Chong, E.2
Givan, R.3
-
48
-
-
33744463933
-
Solitaire: Man versus machine
-
Yan, X., Diaconis, P., Rusmevichientong, P., & Van Roy, B. (2004). Solitaire: Man versus machine. In Conference on Advances in Neural Information Processing.
-
(2004)
Conference on Advances in Neural Information Processing
-
-
Yan, X.1
Diaconis, P.2
Rusmevichientong, P.3
Van Roy, B.4
-
51
-
-
0038200710
-
Learning-assisted automated planning: Looking back, taking stock, going forward
-
2
-
Zimmerman, T., & Kambhampati, S. (2003). Learning-assisted automated planning: Looking back, taking stock, going forward. AI Magazine, 24(2)(2), 73-96.
-
(2003)
AI Magazine
, vol.24
, Issue.2
, pp. 73-96
-
-
Zimmerman, T.1
Kambhampati, S.2
|