메뉴 건너뛰기




Volumn 3194, Issue , 2004, Pages 80-97

Learning an approximation to inductive logic programming clause evaluation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTATIONAL METHODS; DATA MINING; INFORMATION RETRIEVAL; LEARNING SYSTEMS; MOLECULAR BIOLOGY; RELATIONAL DATABASE SYSTEMS; STOCHASTIC PROGRAMMING; ALGORITHMS; APPROXIMATION ALGORITHMS; COMPUTATION THEORY; FUNCTION EVALUATION; LOGIC PROGRAMMING; STOCHASTIC SYSTEMS;

EID: 22944431848     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-30109-7_10     Document Type: Conference Paper
Times cited : (14)

References (32)
  • 2
    • 0026492833 scopus 로고
    • Predicting protein secondary structure using inductive logic programming
    • R. King, S. Muggleton & M. Sternberg (1992). Predicting protein secondary structure using inductive logic programming. Protein Engineering, 5:647-657.
    • (1992) Protein Engineering , vol.5 , pp. 647-657
    • King, R.1    Muggleton, S.2    Sternberg, M.3
  • 9
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • J. Quinlan (1990). Learning logical definitions from relations. Machine Learning, 239-266.
    • (1990) Machine Learning , pp. 239-266
    • Quinlan, J.1
  • 11
    • 77951503082 scopus 로고
    • Inverse entailment and progol
    • S. Muggleton (1995). Inverse Entailment and Progol. New Generation Computing, 13:245-286.
    • (1995) New Generation Computing , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 12
    • 0004291327 scopus 로고    scopus 로고
    • A study of two probabilistic methods for searching large spaces with ILP
    • Oxford Univ. Computing Lab.
    • A. Srinivasan (2000). A study of two probabilistic methods for searching large spaces with ILP. Tech. Report PRG-TR-16-00. Oxford Univ. Computing Lab.
    • (2000) Tech. Report , vol.PRG-TR-16-00
    • Srinivasan, A.1
  • 15
    • 0027904990 scopus 로고
    • Satisfiability of the smallest binary program
    • P. Hanschke & J. Wurtz (1993). Satisfiability of the smallest binary program. Info. Proc. Letters, 496:237-241.
    • (1993) Info. Proc. Letters , vol.496 , pp. 237-241
    • Hanschke, P.1    Wurtz, J.2
  • 18
    • 0013198656 scopus 로고    scopus 로고
    • Improving the efficiency of inductive logic programming through the use of query packs
    • H. Blocked, L. Dehasp, B. Demoen, G. Janssens, J. Ramon & H. Vandecasteele (2002). Improving the efficiency of inductive logic programming through the use of query packs. J. AI Research, 16:135-166.
    • (2002) J. AI Research , vol.16 , pp. 135-166
    • Blocked, H.1    Dehasp, L.2    Demoen, B.3    Janssens, G.4    Ramon, J.5    Vandecasteele, H.6
  • 20
    • 22644449927 scopus 로고    scopus 로고
    • A study of two sampling methods for analysing large datasets with ILP
    • A. Srinivasan (1999). A study of two sampling methods for analysing large datasets with ILP. Data Mining and Knowledge Discovery, 3:95-123.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , pp. 95-123
    • Srinivasan, A.1
  • 21
    • 0033889073 scopus 로고    scopus 로고
    • Resource-bounded relational reasoning: Induction and deduction through stochastic matching
    • M. Sebag & C. Rouveirol (2000). Resource-bounded relational reasoning: induction and deduction through stochastic matching. Machine Learning, 38:41-62.
    • (2000) Machine Learning , vol.38 , pp. 41-62
    • Sebag, M.1    Rouveirol, C.2
  • 23
    • 0002842702 scopus 로고    scopus 로고
    • Learning evaluation functions to improve optimization by local search
    • J. Boyan & A. Moore (2000). Learning evaluation functions to improve optimization by local search. J. Machine Learning Research, 1:77-112.
    • (2000) J. Machine Learning Research , vol.1 , pp. 77-112
    • Boyan, J.1    Moore, A.2
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe & H. White (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 27
    • 0030044168 scopus 로고    scopus 로고
    • Structure-activity relationships derived by machine learning
    • R. King, S. Muggleton, A. Srinivasan & M. Sternberg (1996). Structure-activity relationships derived by machine learning. PNAS, 93:438-442.
    • (1996) PNAS , vol.93 , pp. 438-442
    • King, R.1    Muggleton, S.2    Srinivasan, A.3    Sternberg, M.4
  • 30
    • 33748269927 scopus 로고    scopus 로고
    • Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction
    • M. Goadrich, L. Oliphant & J. Shavlik (2004). Learning ensembles of first-order clauses for recall-precision curves: a case study in biomedical information extraction. Proc. 14th Intl. Conf. on Inductive Logic Programming.
    • (2004) Proc. 14th Intl. Conf. on Inductive Logic Programming
    • Goadrich, M.1    Oliphant, L.2    Shavlik, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.