-
2
-
-
0000582521
-
Statistical analysis of non-lattice data
-
Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, 24, 179-195.
-
(1975)
The Statistician
, vol.24
, pp. 179-195
-
-
Besag, J.1
-
3
-
-
31844433245
-
Learning as search optimization: Approximate large margin methods for structured prediction
-
Bonn, Germany
-
Daumé III, H., & Marcu, D. (2005). Learning as search optimization: Approximate large margin methods for structured prediction. International Conference on Machine Learning (ICML). Bonn, Germany.
-
(2005)
International Conference on Machine Learning (ICML)
-
-
Daumé III, H.1
Marcu, D.2
-
6
-
-
0009856498
-
Consistency of maximum likelihood and pseudolikelihood estimators for gibbs distributions
-
W. Fleming and P. Lions Eds, New York: Springer
-
Gidas, B. (1988). Consistency of maximum likelihood and pseudolikelihood estimators for gibbs distributions. In W. Fleming and P. Lions (Eds.), Stochastic differential systems, stochastic control theory and applications. New York: Springer.
-
(1988)
Stochastic differential systems, stochastic control theory and applications
-
-
Gidas, B.1
-
7
-
-
33749425692
-
Consistency of pseudolikelihood estimation of fully visible boltzmann machines
-
Hyvarinen, A. (2006). Consistency of pseudolikelihood estimation of fully visible boltzmann machines. Neural Computation (pp. 2283-92).
-
(2006)
Neural Computation
, pp. 2283-2292
-
-
Hyvarinen, A.1
-
9
-
-
0000747663
-
Maximum entropy Markov models for information extraction and segmentation
-
Morgan Kaufmann, San Francisco, CA
-
McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction and segmentation. Proc. 17th International Conf. on Machine Learning (pp. 591-598). Morgan Kaufmann, San Francisco, CA.
-
(2000)
Proc. 17th International Conf. on Machine Learning
, pp. 591-598
-
-
McCallum, A.1
Freitag, D.2
Pereira, F.3
-
10
-
-
85121365374
-
Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons
-
McCallum, A., & Li, W. (2003). Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. Seventh Conference on Natural Language Learning (CoNLL).
-
(2003)
Seventh Conference on Natural Language Learning (CoNLL)
-
-
McCallum, A.1
Li, W.2
-
13
-
-
56449104958
-
Learning and inference over constrained output
-
Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2005). Learning and inference over constrained output. Proc. of the International Joint Conference on Artificial Intelligence (IJCAI) (pp. 1124-1129).
-
(2005)
Proc. of the International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1124-1129
-
-
Punyakanok, V.1
Roth, D.2
Yih, W.3
Zimak, D.4
-
18
-
-
33750032384
-
An introduction to conditional random fields for relational learning
-
L. Getoor and B. Taskar Eds, MIT Press. To appear
-
Sutton, C., & McCallum, A. (2006). An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar (Eds.), Introduction to statistical relational learning. MIT Press. To appear.
-
(2006)
Introduction to statistical relational learning
-
-
Sutton, C.1
McCallum, A.2
-
19
-
-
34547991666
-
Local training and belief propagation
-
TR-2006-121, Microsoft Research
-
Sutton, C., &, Minka, T. (2006). Local training and belief propagation (Technical Report TR-2006-121). Microsoft Research.
-
(2006)
Technical Report
-
-
Sutton, C.1
Minka, T.2
-
21
-
-
84983470508
-
Feature-rich part-of-speech tagging with a cyclic dependency network
-
Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech tagging with a cyclic dependency network. HLT-NAACL.
-
(2003)
HLT-NAACL
-
-
Toutanova, K.1
Klein, D.2
Manning, C.D.3
Singer, Y.4
-
22
-
-
33749243756
-
Accelerated training of conditional random fields with stochastic meta-descent
-
Vishwanathan, S., Schraudolph, N. N., Schmidt, M. W., & Murphy, K. (2006). Accelerated training of conditional random fields with stochastic meta-descent. International Conference on Machine Learning (ICML) (pp. 969-976).
-
(2006)
International Conference on Machine Learning (ICML)
, pp. 969-976
-
-
Vishwanathan, S.1
Schraudolph, N.N.2
Schmidt, M.W.3
Murphy, K.4
|