메뉴 건너뛰기




Volumn 366, Issue 1878, 2008, Pages 3067-3089

Models and computational strategies linking physiological response to molecular networks from large-scale data

Author keywords

Functional modules; Network inference; Statistical modelling; Systems biology

Indexed keywords

CHLORINE COMPOUNDS; MODULAR CONSTRUCTION;

EID: 48349102010     PISSN: 1364503X     EISSN: None     Source Type: Journal    
DOI: 10.1098/rsta.2008.0085     Document Type: Article
Times cited : (11)

References (56)
  • 1
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: Theory and experimental approaches
    • doi:10.1038/nrg2102
    • Alon, U. 2007 Network motifs: theory and experimental approaches. Rev. Genet. 8, 450-461. (doi:10.1038/nrg2102)
    • (2007) Rev. Genet , vol.8 , pp. 450-461
    • Alon, U.1
  • 2
    • 0043130656 scopus 로고    scopus 로고
    • Foundations of a query and simulation system for the modeling of biochemical and biological processes
    • Antoniotti, M., Park, F., Policriti, A., Ugel, N. & Mishra, B. 2003 Foundations of a query and simulation system for the modeling of biochemical and biological processes. Pac. Symp. Biocomput. 8, 116-127.
    • (2003) Pac. Symp. Biocomput , vol.8 , pp. 116-127
    • Antoniotti, M.1    Park, F.2    Policriti, A.3    Ugel, N.4    Mishra, B.5
  • 3
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • doi:10.1186/1471-2105-4-2
    • Bader, G. D. & Hogue, C. W. V. 2003 An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2. (doi:10.1186/1471-2105-4-2)
    • (2003) BMC Bioinform , vol.4 , pp. 2
    • Bader, G.D.1    Hogue, C.W.V.2
  • 4
    • 33645527646 scopus 로고    scopus 로고
    • Prediction by supervised principal components
    • doi:10.1198/016214505000000628
    • Bair, E., Hastie, T., Paul, D. & Tibshirani, R. 2006 Prediction by supervised principal components. J. Am. Stat. Assoc. 101, 119-137. (doi:10.1198/016214505000000628)
    • (2006) J. Am. Stat. Assoc , vol.101 , pp. 119-137
    • Bair, E.1    Hastie, T.2    Paul, D.3    Tibshirani, R.4
  • 5
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • doi:10.1093/ bioinformatics/btl003
    • Bansal, M., Della Gatta, G. & di Bernando, D. 2006 Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22, 815-822. (doi:10.1093/ bioinformatics/btl003)
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1    Della Gatta, G.2    di Bernando, D.3
  • 8
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • doi:10.1093/ bioinformatics/bti014
    • Beal, M. J., Falciani, F., Ghahramani, Z., Rangel, C. & Wild, D. L. 2005 A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21, 349-356. (doi:10.1093/ bioinformatics/bti014)
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 9
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • doi:10.1186/gb-2006-7-5-r36
    • Bonneau, R., Reiss, D., Shannon, P., Facciotti, M., Hood, L., Baliga, N. & Thorsson, V. 2006 The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36. (doi:10.1186/gb-2006-7-5-r36)
    • (2006) Genome Biol , vol.7
    • Bonneau, R.1    Reiss, D.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.6    Thorsson, V.7
  • 10
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte, A. J. & Kohane, I. S. 2000 Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5, 418-429.
    • (2000) Pac. Symp. Biocomput , vol.5 , pp. 418-429
    • Butte, A.J.1    Kohane, I.S.2
  • 11
    • 1342329447 scopus 로고    scopus 로고
    • An overview of CellML 1.1, a biological model description language
    • doi:10.1177/0037549703040939
    • Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P. & Hunter, P. J. 2003 An overview of CellML 1.1, a biological model description language. Simulation 79, 740-747. (doi:10.1177/0037549703040939)
    • (2003) Simulation , vol.79 , pp. 740-747
    • Cuellar, A.A.1    Lloyd, C.M.2    Nielsen, P.F.3    Bullivant, D.P.4    Nickerson, D.P.5    Hunter, P.J.6
  • 12
    • 23944441266 scopus 로고    scopus 로고
    • Interleukin-6 regulation of prostate cancer cell growth
    • doi:10.1002/jcb.20477
    • Culig, Z., Steiner, H., Bartsch, G. & Hobisch, A. 2005 Interleukin-6 regulation of prostate cancer cell growth. J. Cell Biochem. 95, 497-505. (doi:10.1002/jcb.20477)
    • (2005) J. Cell Biochem , vol.95 , pp. 497-505
    • Culig, Z.1    Steiner, H.2    Bartsch, G.3    Hobisch, A.4
  • 13
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D'haeseleer, P., Wen, X., Fuhrman, S. & Somogyi, R. 1999 Linear modeling of mRNA expression levels during CNS development and injury. Pac. Symp. Biocomput. 4, 41-52.
    • (1999) Pac. Symp. Biocomput , vol.4 , pp. 41-52
    • D'haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 15
    • 0348049802 scopus 로고    scopus 로고
    • Systems biology markup language: Level 2 and beyond
    • Finney, A. & Hucka, M. 2003 Systems biology markup language: level 2 and beyond. Biochem. Soc. Trans. 31, 1472-1473.
    • (2003) Biochem. Soc. Trans , vol.31 , pp. 1472-1473
    • Finney, A.1    Hucka, M.2
  • 17
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode action via expression profiling
    • doi:10.1126/science.1081900
    • Gardner, T., di Bernando, D., Lorenz, D. & Collins, J. 2003 Inferring genetic networks and identifying compound mode action via expression profiling. Science 301, 102-105. (doi:10.1126/science.1081900)
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.1    di Bernando, D.2    Lorenz, D.3    Collins, J.4
  • 18
    • 33646509024 scopus 로고    scopus 로고
    • Mathematical models in physiology
    • doi:10.1098/rsta.2006.1757
    • Gavaghan, D., Garny, A., Maini, P. K. & Kohl, P. 2006 Mathematical models in physiology. Phil. Trans. R. Soc. A 364, 1099-1106. (doi:10.1098/rsta.2006.1757)
    • (2006) Phil. Trans. R. Soc. A , vol.364 , pp. 1099-1106
    • Gavaghan, D.1    Garny, A.2    Maini, P.K.3    Kohl, P.4
  • 19
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology Consortium 2000 Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25-29. (doi:10.1038/75556)
    • Gene Ontology Consortium 2000 Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25-29. (doi:10.1038/75556)
  • 20
    • 14644396645 scopus 로고    scopus 로고
    • Functional cartography of complex metabolic networks
    • doi:10.1038/nature03288
    • Guimerà, R. & Amaral, L. A. N. 2005 Functional cartography of complex metabolic networks. Nature 433, 895-900. (doi:10.1038/nature03288)
    • (2005) Nature , vol.433 , pp. 895-900
    • Guimerà, R.1    Amaral, L.A.N.2
  • 21
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • doi:10.1093/bioinformatics/bti226
    • Guthke, R., Möller, U., Hoffmann, M., Thies, F. & Töpfer, S. 2005 Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 21, 1626-1634. (doi:10.1093/bioinformatics/bti226)
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1    Möller, U.2    Hoffmann, M.3    Thies, F.4    Töpfer, S.5
  • 22
    • 34247616805 scopus 로고    scopus 로고
    • Bayesian networks and informative priors: Transcriptional regulatory network models
    • eds K. A. Do, P. Mueller & M. Vanucci, pp, Cambridge, UK: Cambridge University Press
    • Hartemink, A. 2006 Bayesian networks and informative priors: transcriptional regulatory network models. In Bayesian inference for gene expression and proteomics (eds K. A. Do, P. Mueller & M. Vanucci), pp. 401-424. Cambridge, UK: Cambridge University Press.
    • (2006) Bayesian inference for gene expression and proteomics , pp. 401-424
    • Hartemink, A.1
  • 23
    • 0033518234 scopus 로고    scopus 로고
    • From molecular to modular cell biology
    • doi:10.1038/35011540
    • Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. 1999 From molecular to modular cell biology. Nature 402, 47-52. (doi:10.1038/35011540)
    • (1999) Nature , vol.402 , pp. 47-52
    • Hartwell, L.H.1    Hopfield, J.J.2    Leibler, S.3    Murray, A.W.4
  • 24
    • 34248173350 scopus 로고    scopus 로고
    • Addressing the challenges of multiscale model management in systems biology
    • doi:10.1016/j.compchemeng.2006.10.004
    • Hetherington, J. et al. 2007 Addressing the challenges of multiscale model management in systems biology. Comput. Chem. Eng. 31, 962-979. (doi:10.1016/j.compchemeng.2006.10.004)
    • (2007) Comput. Chem. Eng , vol.31 , pp. 962-979
    • Hetherington, J.1
  • 26
    • 0000801240 scopus 로고    scopus 로고
    • Discovering regulatory and signalling circuits in molecular interaction networks
    • Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. 2002 Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, 233-240.
    • (2002) Bioinformatics , vol.18 , pp. 233-240
    • Ideker, T.1    Ozier, O.2    Schwikowski, B.3    Siegel, A.F.4
  • 27
    • 33748849648 scopus 로고    scopus 로고
    • Machine learning in bioinformatics
    • doi:10.1093/bib/ bbk007
    • Larrañaga, P. et al. 2006 Machine learning in bioinformatics. Brief Bioinform. 7, 86-112. (doi:10.1093/bib/ bbk007)
    • (2006) Brief Bioinform , vol.7 , pp. 86-112
    • Larrañaga, P.1
  • 28
    • 20744441547 scopus 로고    scopus 로고
    • Modularized learning of genetic interaction networks from biological annotations and mRNA expression data
    • doi:10.1093/bioinformatics/bti406
    • Lee, P. H. & Lee, D. 2005 Modularized learning of genetic interaction networks from biological annotations and mRNA expression data. Bioinformatics 21, 2739-2747. (doi:10.1093/bioinformatics/bti406)
    • (2005) Bioinformatics , vol.21 , pp. 2739-2747
    • Lee, P.H.1    Lee, D.2
  • 30
    • 0035478586 scopus 로고    scopus 로고
    • The Virtual Cell: A software environment for computational cell biology
    • doi:10.1016/S0167-7799(01)01740-1
    • Loew, L. M. & Schaff, J. C. 2001 The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19, 401-406. (doi:10.1016/S0167-7799(01)01740-1)
    • (2001) Trends Biotechnol , vol.19 , pp. 401-406
    • Loew, L.M.1    Schaff, J.C.2
  • 31
    • 33748464764 scopus 로고    scopus 로고
    • Combining functional and topological properties to identify core modules in protein interaction networks
    • doi:10.1002/prot.21071
    • Lubovac, Z., Gamalielsson, J. & Olsson, B. 2006 Combining functional and topological properties to identify core modules in protein interaction networks. BMC Bioinform. 64, 948-959. (doi:10.1002/prot.21071)
    • (2006) BMC Bioinform , vol.64 , pp. 948-959
    • Lubovac, Z.1    Gamalielsson, J.2    Olsson, B.3
  • 32
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • doi:10.1126/science.298.5594.824
    • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. 2002 Network motifs: simple building blocks of complex networks. Science 298, 824-827. (doi:10.1126/science.298.5594.824)
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1    Shen-Orr, S.2    Itzkovitz, S.3    Kashtan, N.4    Chklovskii, D.5    Alon, U.6
  • 34
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • doi:10.1093/bioinformatics/18. suppl_1.S241
    • Ong, I. M., Glasner, J. D. & Page, D. 2002 Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18, 247-248. (doi:10.1093/bioinformatics/18. suppl_1.S241)
    • (2002) Bioinformatics , vol.18 , pp. 247-248
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 35
    • 24344498648 scopus 로고    scopus 로고
    • A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae
    • doi:10.1101/gr.3847105
    • Petti, A. A. & Church, G. M. 2005 A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Res. 15, 1298-1306. (doi:10.1101/gr.3847105)
    • (2005) Genome Res , vol.15 , pp. 1298-1306
    • Petti, A.A.1    Church, G.M.2
  • 36
    • 33846002373 scopus 로고    scopus 로고
    • Modularity and dynamics of cellular networks
    • doi:10.1371/journal.pcbi. 0020174
    • Qi, Y. & Ge, H. 2006 Modularity and dynamics of cellular networks. PLoS Comput. Biol. 2, 1502-1510. (doi:10.1371/journal.pcbi. 0020174)
    • (2006) PLoS Comput. Biol , vol.2 , pp. 1502-1510
    • Qi, Y.1    Ge, H.2
  • 37
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • doi:10.1093/bioinformatics/bth093
    • Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild, D. L. & Falciani, F. 2004 Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20, 1361-1372. (doi:10.1093/bioinformatics/bth093)
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3    Lioumi, M.4    Sotheran, E.5    Gaiba, A.6    Wild, D.L.7    Falciani, F.8
  • 38
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • doi:10.1126/science.1073374
    • Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabasi, A. L. 2002 Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555. (doi:10.1126/science.1073374)
    • (2002) Science , vol.297 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.L.2    Mongru, D.A.3    Oltvai, Z.N.4    Barabasi, A.L.5
  • 39
    • 0037417817 scopus 로고    scopus 로고
    • Modular organization of cellular networks
    • doi:10.1073/pnas.0237338100
    • Rives, A. W. & Galitski, T. 2003 Modular organization of cellular networks. Proc. Natl Acad. Sci. USA 100, 1128-1133. (doi:10.1073/pnas.0237338100)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 1128-1133
    • Rives, A.W.1    Galitski, T.2
  • 40
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • doi:10.1093/bioinformatics/btk017
    • Sabatti, C. & James, G. 2005 Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics 22, 739-746. (doi:10.1093/bioinformatics/btk017)
    • (2005) Bioinformatics , vol.22 , pp. 739-746
    • Sabatti, C.1    James, G.2
  • 41
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • doi:10.1126/science.1105809
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. 2005 Causal protein-signaling networks derived from multiparameter single-cell data. Science 22, 523-529. (doi:10.1126/science.1105809)
    • (2005) Science , vol.22 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 42
    • 0037311919 scopus 로고    scopus 로고
    • TM4: A free, open-source system for microarray data management and analysis
    • Saeed, A. I. et al. 2003 TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374-378.
    • (2003) Biotechniques , vol.34 , pp. 374-378
    • Saeed, A.I.1
  • 43
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • doi:10.1038/ng1165
    • Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. & Friedman, N. 2003a Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166-176. (doi:10.1038/ng1165)
    • (2003) Nat. Genet , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 44
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
    • doi:10.1093/bioinformatics/btg1038
    • Segal, E., Yelensky, R. & Koller, D. 2003b Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19, 273-282. (doi:10.1093/bioinformatics/btg1038)
    • (2003) Bioinformatics , vol.19 , pp. 273-282
    • Segal, E.1    Yelensky, R.2    Koller, D.3
  • 45
    • 4444239427 scopus 로고    scopus 로고
    • Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage
    • doi:10.1111/j.0006-341X.2004.00233.x
    • Sha, N. et al. 2004 Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60, 812-819. (doi:10.1111/j.0006-341X.2004.00233.x)
    • (2004) Biometrics , vol.60 , pp. 812-819
    • Sha, N.1
  • 46
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • doi:10.1016/S1535-6108(02)00030-2
    • Singh, D. et al. 2002 Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203-209. (doi:10.1016/S1535-6108(02)00030-2)
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 47
    • 33747828539 scopus 로고    scopus 로고
    • JCell - a JAVA-based framework for inferring regulatory networks from time series data
    • doi:10.1093/bioinformatics/btl322
    • Spieth, C., Supper, J., Streichert, F., Speer, N. & Zell, A. 2006 JCell - a JAVA-based framework for inferring regulatory networks from time series data. Bioinformatics 22, 2051-2052. (doi:10.1093/bioinformatics/btl322)
    • (2006) Bioinformatics , vol.22 , pp. 2051-2052
    • Spieth, C.1    Supper, J.2    Streichert, F.3    Speer, N.4    Zell, A.5
  • 48
    • 0141626866 scopus 로고    scopus 로고
    • E-Cell 2: Multi-platform E-Cell simulation system
    • doi:10.1093/bioinformatics/btg221
    • Takahashi, K. et al. 2003 E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics 19, 1727-1729. (doi:10.1093/bioinformatics/btg221)
    • (2003) Bioinformatics , vol.19 , pp. 1727-1729
    • Takahashi, K.1
  • 49
    • 0037687416 scopus 로고    scopus 로고
    • Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling
    • doi:10.1073/pnas.0933416100
    • Tegner, J., Yeung, M. K., Hasty, J. & Collins, J. J. 2003 Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl Acad. Sci. USA 100, 5944-5949. (doi:10.1073/pnas.0933416100)
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 5944-5949
    • Tegner, J.1    Yeung, M.K.2    Hasty, J.3    Collins, J.J.4
  • 50
    • 33646121277 scopus 로고    scopus 로고
    • GALGO: An R package for multivariate variable selection using genetic algorithms
    • doi:10.1093/bioinformatics/btl074
    • Trevino, V. & Falciani, F. 2006 GALGO: an R package for multivariate variable selection using genetic algorithms. Bioinformatics 22, 1154-1156. (doi:10.1093/bioinformatics/btl074)
    • (2006) Bioinformatics , vol.22 , pp. 1154-1156
    • Trevino, V.1    Falciani, F.2
  • 51
    • 32544457104 scopus 로고    scopus 로고
    • Least absolute regression network analysis of the murine osteoblast differentiation network
    • doi:10.1093/bioinformatics/bti816
    • van Someren, E., Vaes, B., Steegenga, W., Sijbers, A., Dechering, K. & Reinders, M. 2006 Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 22, 477-484. (doi:10.1093/bioinformatics/bti816)
    • (2006) Bioinformatics , vol.22 , pp. 477-484
    • van Someren, E.1    Vaes, B.2    Steegenga, W.3    Sijbers, A.4    Dechering, K.5    Reinders, M.6
  • 52
    • 42349111720 scopus 로고    scopus 로고
    • Module-based outcome prediction using breast cancer compendia
    • doi:10.1371/journal.pone.0001047
    • van Vliet, M. H., Klijn, C. N., Wessels, L. F. A. & Reinders, M. J. T. 2007 Module-based outcome prediction using breast cancer compendia. PLoS One 2, e1047. (doi:10.1371/journal.pone.0001047)
    • (2007) PLoS One , vol.2
    • van Vliet, M.H.1    Klijn, C.N.2    Wessels, L.F.A.3    Reinders, M.J.T.4
  • 53
    • 26444549021 scopus 로고    scopus 로고
    • Modular interdependency in complex dynamical systems
    • doi:10.1162/106454605774270589
    • Watson, R. A. & Pollack, J. B. 2005 Modular interdependency in complex dynamical systems. Artif. Life 11, 445-457. (doi:10.1162/106454605774270589)
    • (2005) Artif. Life , vol.11 , pp. 445-457
    • Watson, R.A.1    Pollack, J.B.2
  • 54
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks
    • doi:10.1093/bioinformatics/btl391
    • Werhli, A., Grzegorczyk, M. & Husmeier, D. 2006 Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 22, 2523-2531. (doi:10.1093/bioinformatics/btl391)
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.1    Grzegorczyk, M.2    Husmeier, D.3
  • 55
    • 0037676107 scopus 로고    scopus 로고
    • Motifs, modules and games in bacteria
    • doi:10.1016/S1369- 5274(03)00033-X
    • Wolf, D. M. & Arkiny, A. P. 2003 Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125-134. (doi:10.1016/S1369- 5274(03)00033-X)
    • (2003) Curr. Opin. Microbiol , vol.6 , pp. 125-134
    • Wolf, D.M.1    Arkiny, A.P.2
  • 56
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • doi:10. 1016/S1535-6108(02)00032-6
    • Yeoh, E. J. et al. 2002 Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133-143. (doi:10. 1016/S1535-6108(02)00032-6)
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.