메뉴 건너뛰기




Volumn 41, Issue 11, 2008, Pages 3271-3286

Kernels, regularization and differential equations

Author keywords

Differential equation; Gaussian process; Positive definite kernel; Reproducing kernel Hilbert space

Indexed keywords

ARTIFICIAL INTELLIGENCE; BANACH SPACES; BESSEL FUNCTIONS; CONTROL THEORY; DIFFERENTIAL EQUATIONS; DIFFERENTIATION (CALCULUS); DYNAMICAL SYSTEMS; EXTRAPOLATION; FINITE DIFFERENCE METHOD; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); HILBERT SPACES; INFERENCE ENGINES; LEARNING SYSTEMS; LINEAR EQUATIONS; MATHEMATICAL OPERATORS; MILITARY DATA PROCESSING; ORDINARY DIFFERENTIAL EQUATIONS; SCHRODINGER EQUATION; STANDARDS; STOCHASTIC MODELS; SUPPORT VECTOR MACHINES; TRELLIS CODES;

EID: 48149115201     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.06.011     Document Type: Article
Times cited : (34)

References (52)
  • 4
    • 27544443176 scopus 로고    scopus 로고
    • Accounting for probe-level noise in principal component analysis of microarray data
    • Sanguinetti G., Milo M., Rattray M., and Lawrence N. Accounting for probe-level noise in principal component analysis of microarray data. Bioinformatics 21 19 (2005) 3748-3754
    • (2005) Bioinformatics , vol.21 , Issue.19 , pp. 3748-3754
    • Sanguinetti, G.1    Milo, M.2    Rattray, M.3    Lawrence, N.4
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery 2 2 (1998) 121-167
    • (1998) Data Min. Knowl. Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 8
    • 0004094721 scopus 로고    scopus 로고
    • MIT Press, Cambridge, MA URL 〈http://www.learning-with-kernels.org〉
    • Schölkopf B., and Smola A. Learning with Kernels (2002), MIT Press, Cambridge, MA. http://www.learning-with-kernels.org URL 〈http://www.learning-with-kernels.org〉
    • (2002) Learning with Kernels
    • Schölkopf, B.1    Smola, A.2
  • 10
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A., and Schölkopf B. A tutorial on support vector regression. Stat. Comput. 14 3 (2004) 199-222
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.1    Schölkopf, B.2
  • 13
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., and Müller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 5 (1998) 1299-1319
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 15
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: mean-field algorithms
    • Opper M., and Winther O. Gaussian processes for classification: mean-field algorithms. Neural Comput. 12 11 (2000) 2655-2684
    • (2000) Neural Comput. , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 18
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • Lawrence N. Gaussian process latent variable models for visualisation of high dimensional data. Advances in Neural Information Processing Systems vol. 16 (2004)
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Lawrence, N.1
  • 19
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A., Schölkopf B., and Müller K. The connection between regularization operators and support vector kernels. Neural Networks 11 4 (1998) 637-649
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.3
  • 28
    • 0000406385 scopus 로고
    • A correspondence between bayesian estimation on stochastic processes and smoothing by splines
    • Kimeldorf G., and Wahba G. A correspondence between bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41 2 (1970) 495-502
    • (1970) Ann. Math. Stat. , vol.41 , Issue.2 , pp. 495-502
    • Kimeldorf, G.1    Wahba, G.2
  • 29
    • 84966244353 scopus 로고
    • Multivariate interpolation and conditionally positive definite functions. II
    • Madych W., and Nelson S. Multivariate interpolation and conditionally positive definite functions. II. Math. Comput. 54 189 (1990) 211-230
    • (1990) Math. Comput. , vol.54 , Issue.189 , pp. 211-230
    • Madych, W.1    Nelson, S.2
  • 30
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A., Schölkopf B., and Müller K.-R. The connection between regularization operators and support vector kernels. Neural Networks 11 (1998) 637-649
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3
  • 31
    • 1942421122 scopus 로고    scopus 로고
    • T. Graepel, Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations, in: Proceedings of the 20th International Conference on Machine Learning, vol. 20, 2003, pp. 234-241.
    • T. Graepel, Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential equations, in: Proceedings of the 20th International Conference on Machine Learning, vol. 20, 2003, pp. 234-241.
  • 32
    • 48149114008 scopus 로고    scopus 로고
    • M. Hein, O. Bousquet, Kernels, associated structures and generalizations, Technical Report 127, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2004.
    • M. Hein, O. Bousquet, Kernels, associated structures and generalizations, Technical Report 127, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2004.
  • 33
    • 0034343735 scopus 로고    scopus 로고
    • Penalized regression with model-based penalties
    • Heckman N.E., and Ramsay J.O. Penalized regression with model-based penalties. Can. J. Stat. 28 (2000) 241-258
    • (2000) Can. J. Stat. , vol.28 , pp. 241-258
    • Heckman, N.E.1    Ramsay, J.O.2
  • 35
    • 0001219859 scopus 로고
    • Regularization theory and neural network architectures
    • Girosi F., Jones M., and Poggio T. Regularization theory and neural network architectures. Neural Comput. 7 (1995) 219-267
    • (1995) Neural Comput. , vol.7 , pp. 219-267
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 36
    • 33845467940 scopus 로고    scopus 로고
    • Implicit surface modelling with a globally regularised basis of compact support
    • Walder C., Schölkopf B., and Chapelle O. Implicit surface modelling with a globally regularised basis of compact support. Comput. Graphics Forum 25 3 (2006) 635-644
    • (2006) Comput. Graphics Forum , vol.25 , Issue.3 , pp. 635-644
    • Walder, C.1    Schölkopf, B.2    Chapelle, O.3
  • 37
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli C., and Pontil M. On learning vector-valued functions. Neural Comput. 17 1 (2005) 177-204
    • (2005) Neural Comput. , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.1    Pontil, M.2
  • 39
    • 0001303543 scopus 로고
    • Monotone Funktionen, Stieltjessche integrate und harmonische analyse
    • Bochner S. Monotone Funktionen, Stieltjessche integrate und harmonische analyse. Math. Ann. 108 (1933) 378-410
    • (1933) Math. Ann. , vol.108 , pp. 378-410
    • Bochner, S.1
  • 40
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R. A new approach to linear filtering and prediction problems. J. Basic Eng. 82 1 (1960) 35-45
    • (1960) J. Basic Eng. , vol.82 , Issue.1 , pp. 35-45
    • Kalman, R.1
  • 42
    • 34547313657 scopus 로고    scopus 로고
    • Graph Laplacians and their convergence on random neighborhood graphs
    • Hein M., Audibert J.-Y., and von Luxburg U. Graph Laplacians and their convergence on random neighborhood graphs. J. Mach. Learn. Res. 8 (2007) 1325-1370
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1325-1370
    • Hein, M.1    Audibert, J.-Y.2    von Luxburg, U.3
  • 44
    • 1942484430 scopus 로고    scopus 로고
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of the 20th International Conference on Machine Learning, vol. 20, 2003.
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of the 20th International Conference on Machine Learning, vol. 20, 2003.
  • 45
    • 84898940249 scopus 로고    scopus 로고
    • M. Tipping, C. Bishop, Bayesian image super-resolution, in: Advances in Neural Information Processing Systems, vol. 15, 2003, pp. 1279-1286.
    • M. Tipping, C. Bishop, Bayesian image super-resolution, in: Advances in Neural Information Processing Systems, vol. 15, 2003, pp. 1279-1286.
  • 46
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Stat. Comput. 17 4 (2007) 395-416
    • (2007) Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • von Luxburg, U.1
  • 47
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M., Ghahramani Z., Jaakkola T., and Saul L. An introduction to variational methods for graphical models. Mach. Learning 37 2 (1999) 183-233
    • (1999) Mach. Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 48
    • 0031582957 scopus 로고    scopus 로고
    • Analytical inversion of general tridiagonal matrices
    • Huang Y., and McColl W. Analytical inversion of general tridiagonal matrices. J. Phys. A: Math. General 30 (1997) 7919-7933
    • (1997) J. Phys. A: Math. General , vol.30 , pp. 7919-7933
    • Huang, Y.1    McColl, W.2
  • 49
    • 48149112173 scopus 로고    scopus 로고
    • C. Archambeau, D. Cornford, M. Opper, J. Shawe-Taylor, Gaussian process approximations of stochastic differential equations, J. Mach. Learn. Res., in: Workshop and Conference Proceedings, vol. 1, 2007, pp. 1-16.
    • C. Archambeau, D. Cornford, M. Opper, J. Shawe-Taylor, Gaussian process approximations of stochastic differential equations, J. Mach. Learn. Res., in: Workshop and Conference Proceedings, vol. 1, 2007, pp. 1-16.
  • 50
    • 0031347068 scopus 로고    scopus 로고
    • S. Julier, J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in: I. Kadar (Ed.), Proceedings of the Conference on Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, 1997, pp. 182-193.
    • S. Julier, J. Uhlmann, A new extension of the Kalman filter to nonlinear systems, in: I. Kadar (Ed.), Proceedings of the Conference on Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, 1997, pp. 182-193.
  • 52
    • 48149095099 scopus 로고    scopus 로고
    • H. Heuser, Lehrbuch der Analysis, Teil 2, B. G. Teubner, Stuttgart, Germany, 1991.
    • H. Heuser, Lehrbuch der Analysis, Teil 2, B. G. Teubner, Stuttgart, Germany, 1991.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.