메뉴 건너뛰기




Volumn 28, Issue 2, 2000, Pages 241-258

Penalized regression with model-based penalties

Author keywords

Nonparametric regression; Penalized least squares; Splines

Indexed keywords


EID: 0034343735     PISSN: 03195724     EISSN: None     Source Type: Journal    
DOI: 10.2307/3315976     Document Type: Article
Times cited : (85)

References (31)
  • 2
    • 0002014881 scopus 로고
    • A general method for the construction of interpolating or smoothing spline functions
    • P. M. Anselone & P. J. Laurent (1968). A general method for the construction of interpolating or smoothing spline functions. Numerische Mathematik, 12, 66-82.
    • (1968) Numerische Mathematik , vol.12 , pp. 66-82
    • Anselone, P.M.1    Laurent, P.J.2
  • 3
    • 0001707631 scopus 로고
    • Estimation, filtering and smoothing in state space models with incompletely specified initial conditions
    • C. Ansley & R. Kohn (1985). Estimation, filtering and smoothing in state space models with incompletely specified initial conditions. The Annals of Statistics, 13, 1286-1316.
    • (1985) The Annals of Statistics , vol.13 , pp. 1286-1316
    • Ansley, C.1    Kohn, R.2
  • 4
    • 0002463166 scopus 로고
    • Nonparametric spline regression with prior information
    • C. Ansley, R. Kohn & C. Wong (1993). Nonparametric spline regression with prior information. Biometrika, 80, 75-88.
    • (1993) Biometrika , vol.80 , pp. 75-88
    • Ansley, C.1    Kohn, R.2    Wong, C.3
  • 5
  • 7
    • 0001060797 scopus 로고
    • A smoothing spline based test of model adequacy in polynomial regression
    • D. D. Cox & E. Koh (1989). A smoothing spline based test of model adequacy in polynomial regression. Annals of the Institute of Statistical Mathematics, 41, 383-400.
    • (1989) Annals of the Institute of Statistical Mathematics , vol.41 , pp. 383-400
    • Cox, D.D.1    Koh, E.2
  • 8
    • 0000439838 scopus 로고
    • Testing the (parametric) null hypothesis in (semiparametric) partial and generalized spline models
    • D. D. Cox, E. Koh, G. Wahba & B. S. Yandell (1988). Testing the (parametric) null hypothesis in (semiparametric) partial and generalized spline models. The Annals of Statistics, 16, 113-119.
    • (1988) The Annals of Statistics , vol.16 , pp. 113-119
    • Cox, D.D.1    Koh, E.2    Wahba, G.3    Yandell, B.S.4
  • 15
    • 0002970891 scopus 로고
    • Smoothing noisy data with spline functions
    • M. F. Hutchison & F. R. de Hoog (1985). Smoothing noisy data with spline functions. Numerische Mathematik, 47, 99-106.
    • (1985) Numerische Mathematik , vol.47 , pp. 99-106
    • Hutchison, M.F.1    De Hoog, F.R.2
  • 16
    • 0000406385 scopus 로고
    • A correspondence between bayesian estimation on stochastic processes and smoothing by splines
    • G. S. Kimeldorf & G. Wahba (1970). A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. The Annals of Mathematical Statistics, 41, 495-502.
    • (1970) The Annals of Mathematical Statistics , vol.41 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 17
    • 0002658412 scopus 로고
    • A fast algorithm for signal extraction, influence and cross-validation in state space models
    • R. Kohn & C. Ansley (1989). A fast algorithm for signal extraction, influence and cross-validation in state space models. Biometrika, 76, 65-69.
    • (1989) Biometrika , vol.76 , pp. 65-69
    • Kohn, R.1    Ansley, C.2
  • 18
    • 0001355852 scopus 로고
    • The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters
    • R. Kohn & C. Ansley (1991). The performance of cross-validation and maximum likelihood estimators of spline smoothing parameters. Journal of Statististical Computing and Simulations, 86, 1042-150.
    • (1991) Journal of Statististical Computing and Simulations , vol.86 , pp. 1042-1150
    • Kohn, R.1    Ansley, C.2
  • 20
    • 0002128713 scopus 로고
    • Nonparametric spline regression with autoregressive moving average errors
    • R. Kohn, C. Ansley & C. Wong (1992). Nonparametric spline regression with autoregressive moving average errors. Biometrika, 79, 335-346.
    • (1992) Biometrika , vol.79 , pp. 335-346
    • Kohn, R.1    Ansley, C.2    Wong, C.3
  • 22
    • 34250516079 scopus 로고
    • Smoothing by spline functions
    • C. Reinsch (1967). Smoothing by spline functions. Numerische Mathematik, 10, 177-183.
    • (1967) Numerische Mathematik , vol.10 , pp. 177-183
    • Reinsch, C.1
  • 23
    • 11644266571 scopus 로고
    • Smoothing by spline functions II
    • C. Reinsch (1971). Smoothing by spline functions II. Numerische Mathematik, 16, 451-454.
    • (1971) Numerische Mathematik , vol.16 , pp. 451-454
    • Reinsch, C.1
  • 27
    • 0000450226 scopus 로고
    • Improper priors, spline smoothing and the problem of guarding against model errors in regression
    • G. Wahba (1978). Improper priors, spline smoothing and the problem of guarding against model errors in regression. Journal of the Royal Statistical Society Series B, 40, 364-372.
    • (1978) Journal of the Royal Statistical Society Series B , vol.40 , pp. 364-372
    • Wahba, G.1
  • 28
    • 0003466536 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia
    • G. Wahba (1990). Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 29
    • 0029936116 scopus 로고    scopus 로고
    • A flexible model for human circadian rhythms
    • Y. Wang & M. B. Brown (1996). A flexible model for human circadian rhythms. Biometrics, 52, 588-596.
    • (1996) Biometrics , vol.52 , pp. 588-596
    • Wang, Y.1    Brown, M.B.2
  • 30
    • 0002373997 scopus 로고
    • The signal extraction approach to nonlinear regression and spline smoothing
    • W. E. Wecker & C. F. Ansley (1983). The signal extraction approach to nonlinear regression and spline smoothing. Journal of the American Statistical Association, 78, 81-89.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 81-89
    • Wecker, W.E.1    Ansley, C.F.2
  • 31
    • 0018984484 scopus 로고
    • A stochastic framework for recursive computation of spline functions: Part II, smoothing splines
    • H. L. Weinert, R. H. Byrd & G. S. Sidhu (1980). A stochastic framework for recursive computation of spline functions: Part II, smoothing splines. Journal of Optimization Theory and Applications, 2, 255-268.
    • (1980) Journal of Optimization Theory and Applications , vol.2 , pp. 255-268
    • Weinert, H.L.1    Byrd, R.H.2    Sidhu, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.