메뉴 건너뛰기




Volumn 20, Issue 7, 2008, Pages 1873-1897

Spectral algorithms for supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; COMPARATIVE STUDY; DATA BASE; REGRESSION ANALYSIS; TIME;

EID: 47049125350     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.05-07-517     Document Type: Article
Times cited : (133)

References (40)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. (1950). Theory of reproducing kernels, Trans. Amer. Math. Soc, 68, 337-404.
    • (1950) Trans. Amer. Math. Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 6
    • 0043245810 scopus 로고    scopus 로고
    • 2-loss: Regression and classification. journal of American Statistical Association, 98, 324-340.
    • 2-loss: Regression and classification. journal of American Statistical Association, 98, 324-340.
  • 7
    • 34547424354 scopus 로고    scopus 로고
    • Optimal rates for regularization operators in learning theory
    • 264/CSAIL-TR 2006-062, Cambridge, MA: MIT. Available online at
    • Caponnetto, A. (2006). Optimal rates for regularization operators in learning theory (Tech. Rep. CBCL Paper 264/CSAIL-TR 2006-062). Cambridge, MA: MIT. Available online at http://cbcl.mit.edu/projects/cbcl/publications/ps/ MIT-CSAIL-TR-2006-062.pdf.
    • (2006) Tech. Rep. CBCL Paper
    • Caponnetto, A.1
  • 8
    • 34548537866 scopus 로고    scopus 로고
    • Optimal rates for regularized least-squares algorithm
    • Caponnetto, A., & De Vito, E. (2007). Optimal rates for regularized least-squares algorithm. Found. Comput. Math., 3, 331-368.
    • (2007) Found. Comput. Math , vol.3 , pp. 331-368
    • Caponnetto, A.1    De Vito, E.2
  • 9
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semisupervised learning
    • S. Becker, S. Thrün, & K. Obermayer Eds, Cambridge, MA: MIT Press
    • Chapelle, O., Weston, J., & Scholkopf, B. (2003). Cluster kernels for semisupervised learning. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Neural information processing systems, 15 (pp. 585-592). Cambridge, MA: MIT Press.
    • (2003) Neural information processing systems , vol.15 , pp. 585-592
    • Chapelle, O.1    Weston, J.2    Scholkopf, B.3
  • 10
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • De Vito, E., Caponnetto, A., & Rosasco, L. (2005). Model selection for regularized least-squares algorithm in learning theory. Found. Comput. Math., 5(1), 59-85.
    • (2005) Found. Comput. Math , vol.5 , Issue.1 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 11
    • 47049131326 scopus 로고    scopus 로고
    • Discretization error analysis for Tikhonov regularization
    • De Vito, E., Rosasco, L., & Caponnetto, A. (2006). Discretization error analysis for Tikhonov regularization. Anal. Appl, 4(1), 81-99.
    • (2006) Anal. Appl , vol.4 , Issue.1 , pp. 81-99
    • De Vito, E.1    Rosasco, L.2    Caponnetto, A.3
  • 15
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Adv. Comp. Math., 13, 1-50.
    • (2000) Adv. Comp. Math , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 16
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, E., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7(2), 219-269.
    • (1995) Neural Computation , vol.7 , Issue.2 , pp. 219-269
    • Girosi, E.1    Jones, M.2    Poggio, T.3
  • 17
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed, Baltimore, MD: Johns Hopkins University Press
    • Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins University Press.
    • (1996) Matrix computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 18
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie, S. T., Rosset, S., Tibshirani, R., & Zhu, J. (2004). The entire regularization path for the support vector machine. JMLR, 5, 1391-1415.
    • (2004) JMLR , vol.5 , pp. 1391-1415
    • Hastie, S.T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 21
    • 33845518144 scopus 로고    scopus 로고
    • Universal kernels
    • Micchelli, C. A., Xu, Y., & Zhang, H. (2006). Universal kernels. JMLR, 7, 2651-2667.
    • (2006) JMLR , vol.7 , pp. 2651-2667
    • Micchelli, C.A.1    Xu, Y.2    Zhang, H.3
  • 22
    • 21844436192 scopus 로고    scopus 로고
    • Regularization by early stopping
    • Computer Sciences Laboratory and RSISE, Australian National University. Available online at
    • Ong, C., & Canu, S. (2004). Regularization by early stopping (Tech. Rep.). Computer Sciences Laboratory and RSISE, Australian National University. Available online at http://asi.insa-rouen.fr/scanu/.
    • (2004) Tech. Rep
    • Ong, C.1    Canu, S.2
  • 24
    • 0042049518 scopus 로고
    • A theory of networks for approximation and learning
    • C. Lau Ed, Piscataway, NJ: IEEE Press
    • Poggio, T., & Girosi, F. (1992). A theory of networks for approximation and learning. In C. Lau (Ed.), Foundation of neural networks (pp. 91-106). Piscataway, NJ: IEEE Press.
    • (1992) Foundation of neural networks , pp. 91-106
    • Poggio, T.1    Girosi, F.2
  • 25
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • Poggio, T., Rifkin, R., Mukherjee, S., & Niyogi, P. (2004). General conditions for predictivity in learning theory. Nature, 428, 419-422.
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 26
    • 0032523506 scopus 로고    scopus 로고
    • Properties of support vector machines
    • Pontil, M., & Verri, A. (1998). Properties of support vector machines. Neural Computation, 10, 977-996.
    • (1998) Neural Computation , vol.10 , pp. 977-996
    • Pontil, M.1    Verri, A.2
  • 29
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • Smale, S., & Zhou, D.-X. (2004). Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. (N.S.), 41(3), 279-305.
    • (2004) Bull. Amer. Math. Soc. (N.S.) , vol.41 , Issue.3 , pp. 279-305
    • Smale, S.1    Zhou, D.-X.2
  • 30
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling. II. Connections to learning theory
    • Smale, S., & Zhou, D.-X. (2005). Shannon sampling. II. Connections to learning theory. Appl. Comput. Harmon. Anal., 19(3), 285-302.
    • (2005) Appl. Comput. Harmon. Anal , vol.19 , Issue.3 , pp. 285-302
    • Smale, S.1    Zhou, D.-X.2
  • 31
    • 34547455409 scopus 로고    scopus 로고
    • Learning theory estimates via integral operators and their approximations
    • Smale, S., & Zhou, D.-X. (2007). Learning theory estimates via integral operators and their approximations. Constructive Approximation, 26(2), 153-172.
    • (2007) Constructive Approximation , vol.26 , Issue.2 , pp. 153-172
    • Smale, S.1    Zhou, D.-X.2
  • 37
    • 33744772341 scopus 로고    scopus 로고
    • Learning rates of least-square regularized regression
    • Wu, Q., Ying, Y., & Zhou, D.-X. (2006). Learning rates of least-square regularized regression. Found. Comput. Math., 6(2), 171-192.
    • (2006) Found. Comput. Math , vol.6 , Issue.2 , pp. 171-192
    • Wu, Q.1    Ying, Y.2    Zhou, D.-X.3
  • 39
    • 84864072823 scopus 로고    scopus 로고
    • Analysis of spectral kernel design based semi-supervised learning
    • Y. Weiss, B. Scholkopf, & J. Platt Eds, Cambridge, MA: MIT Press
    • Zhang, T., & Ando, R. (2006). Analysis of spectral kernel design based semi-supervised learning. In Y. Weiss, B. Scholkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1601-1608). Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 1601-1608
    • Zhang, T.1    Ando, R.2
  • 40
    • 84899028404 scopus 로고    scopus 로고
    • Nonparametric transforms of graph kernels for semi-supervised learning
    • L. K. Saul, Y. Weiss, & L. Bottou Eds, Cambridge, MA: MIT Press
    • Zhu, X., Kandola, J., Ghahramani, Z., & Lafferty, J. (2005). Nonparametric transforms of graph kernels for semi-supervised learning. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Neural information processing systems, 17. Cambridge, MA: MIT Press.
    • (2005) Neural information processing systems, 17
    • Zhu, X.1    Kandola, J.2    Ghahramani, Z.3    Lafferty, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.