메뉴 건너뛰기




Volumn 14, Issue , 2008, Pages 143-170

Network models in drug discovery and regenerative medicine

Author keywords

Bayesian methods; cancer; feature selection; networks; QSAR; stem cells

Indexed keywords

BENZODIAZEPINE; BETA ADRENERGIC RECEPTOR BLOCKING AGENT; BIOMATERIAL; CHOLINERGIC RECEPTOR BLOCKING AGENT; DRUG; ESTROGEN; GLUCOCORTICOID; MONOAMINE OXIDASE INHIBITOR; NEUROLEPTIC AGENT; NONSTEROID ANTIINFLAMMATORY AGENT; OPIATE; SEROTONIN UPTAKE INHIBITOR; TRICYCLIC ANTIDEPRESSANT AGENT;

EID: 46149125735     PISSN: 13872656     EISSN: None     Source Type: Book Series    
DOI: 10.1016/S1387-2656(08)00005-7     Document Type: Review
Times cited : (8)

References (126)
  • 2
    • 12444281776 scopus 로고    scopus 로고
    • Bayesian neural networks for modelling in drug discovery (invited review)
    • Winkler D.A., and Burden F.R. Bayesian neural networks for modelling in drug discovery (invited review). Biosilico 2 (2004) 104-111
    • (2004) Biosilico , vol.2 , pp. 104-111
    • Winkler, D.A.1    Burden, F.R.2
  • 3
    • 11244335581 scopus 로고    scopus 로고
    • Neural networks in ADME and toxicity prediction
    • Winkler D.A. Neural networks in ADME and toxicity prediction. Drugs Future 29 10 (2004) 1043-1057
    • (2004) Drugs Future , vol.29 , Issue.10 , pp. 1043-1057
    • Winkler, D.A.1
  • 4
    • 16544393180 scopus 로고    scopus 로고
    • Neural networks as robust tools in drug lead discovery and development
    • Winkler D.A. Neural networks as robust tools in drug lead discovery and development. Mol Biotechnol 27 2 (2004) 139-167
    • (2004) Mol Biotechnol , vol.27 , Issue.2 , pp. 139-167
    • Winkler, D.A.1
  • 5
    • 0002836406 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms in drug design
    • Terfloth L., and Gasteiger J. Neural networks and genetic algorithms in drug design. Drug Discov Today 6 15 (2001) S102-S108
    • (2001) Drug Discov Today , vol.6 , Issue.15
    • Terfloth, L.1    Gasteiger, J.2
  • 6
    • 0036116178 scopus 로고    scopus 로고
    • Applications of artificial neural network in AIDS research and therapy
    • Sardari S., and Sardari D. Applications of artificial neural network in AIDS research and therapy. Curr Pharm Des 8 8 (2002) 659-670
    • (2002) Curr Pharm Des , vol.8 , Issue.8 , pp. 659-670
    • Sardari, S.1    Sardari, D.2
  • 7
    • 0032735695 scopus 로고    scopus 로고
    • Neural networks in drug discovery: have they lived up to their promise?
    • Manallack D.T., and Livingstone D.J. Neural networks in drug discovery: have they lived up to their promise?. Eur J Med Chem 34 3 (1999) 195-208
    • (1999) Eur J Med Chem , vol.34 , Issue.3 , pp. 195-208
    • Manallack, D.T.1    Livingstone, D.J.2
  • 8
    • 0031090791 scopus 로고    scopus 로고
    • Data modelling with neural networks: advantages and limitations
    • Livingstone D.J., Manallack D.T., and Tetko I.V. Data modelling with neural networks: advantages and limitations. J Comput Aided Mol Des 11 2 (1997) 135-142
    • (1997) J Comput Aided Mol Des , vol.11 , Issue.2 , pp. 135-142
    • Livingstone, D.J.1    Manallack, D.T.2    Tetko, I.V.3
  • 9
    • 0025971792 scopus 로고
    • Neural networks applied to pharmaceutical problems. 5. Obtaining the correlation indexes between drug activity and structural parameters using a neural network
    • Aoyama T., and Ichikawa H. Neural networks applied to pharmaceutical problems. 5. Obtaining the correlation indexes between drug activity and structural parameters using a neural network. Chem Pharm Bull(Tokyo) 39 2 (1991) 372-378
    • (1991) Chem Pharm Bull(Tokyo) , vol.39 , Issue.2 , pp. 372-378
    • Aoyama, T.1    Ichikawa, H.2
  • 11
    • 46149095221 scopus 로고    scopus 로고
    • Gasteiger J and Li X. The Mapping of Molecular Electrostatic Potentials by Kohonen-Networks Investigations of Neurotransmitters and their Agonists. In: Software-Development in Chemistry, GDCH, Frankfurt/Main, 1993, Vol. 7, pp. 1-14.
    • Gasteiger J and Li X. The Mapping of Molecular Electrostatic Potentials by Kohonen-Networks Investigations of Neurotransmitters and their Agonists. In: Software-Development in Chemistry, GDCH, Frankfurt/Main, 1993, Vol. 7, pp. 1-14.
  • 12
    • 0033970811 scopus 로고    scopus 로고
    • Neural networks are useful tools for drug design
    • Schneider G. Neural networks are useful tools for drug design. Neur Net 13 (2000) 13-15
    • (2000) Neur Net , vol.13 , pp. 13-15
    • Schneider, G.1
  • 14
    • 0033935988 scopus 로고    scopus 로고
    • Neural network techniques for informatics of cancer drug discovery
    • van Osdol W.W., Myers T.G., and Weinstein J.N. Neural network techniques for informatics of cancer drug discovery. Numer Comp Methods, Part C 321 (2000) 369-395
    • (2000) Numer Comp Methods, Part C , vol.321 , pp. 369-395
    • van Osdol, W.W.1    Myers, T.G.2    Weinstein, J.N.3
  • 15
    • 35148824614 scopus 로고    scopus 로고
    • Network pharmacology
    • Hopkins A.L. Network pharmacology. Nat Biotechnol 25 10 (2007) 1110-1111
    • (2007) Nat Biotechnol , vol.25 , Issue.10 , pp. 1110-1111
    • Hopkins, A.L.1
  • 16
    • 33847377573 scopus 로고    scopus 로고
    • A robustness-based approach to systems-oriented drug design
    • Kitano H. A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6 (2007) 202-210
    • (2007) Nat Rev Drug Discov , vol.6 , pp. 202-210
    • Kitano, H.1
  • 20
    • 16444366905 scopus 로고    scopus 로고
    • QSAR models for the analysis of bioresponse data from combinatorial libraries of biomaterials
    • Smith J.R., Kholodovych V., Knight D., Welsh W.J., and Kohn J. QSAR models for the analysis of bioresponse data from combinatorial libraries of biomaterials. QSAR Comb Sci 24 1 (2005) 99-113
    • (2005) QSAR Comb Sci , vol.24 , Issue.1 , pp. 99-113
    • Smith, J.R.1    Kholodovych, V.2    Knight, D.3    Welsh, W.J.4    Kohn, J.5
  • 21
    • 46149100427 scopus 로고    scopus 로고
    • The science of complex systems
    • Finnigan J. The science of complex systems. Aust Sci June (2005) 32-34
    • (2005) Aust Sci , vol.June , pp. 32-34
    • Finnigan, J.1
  • 22
    • 0035826155 scopus 로고    scopus 로고
    • Exploring complex networks
    • Strogatz S.H. Exploring complex networks. Nature 410 (2001) 268-276
    • (2001) Nature , vol.410 , pp. 268-276
    • Strogatz, S.H.1
  • 23
    • 0035823264 scopus 로고    scopus 로고
    • The small world inside large metabolic networks
    • Wagner A., and Fell D.A. The small world inside large metabolic networks. Proc R Soc Lond B 268 (2001) 1803-1810
    • (2001) Proc R Soc Lond B , vol.268 , pp. 1803-1810
    • Wagner, A.1    Fell, D.A.2
  • 24
    • 23344438932 scopus 로고    scopus 로고
    • Scale-freeness and biological networks
    • Arita M. Scale-freeness and biological networks. J Biochem 138 (2005) 1-4
    • (2005) J Biochem , vol.138 , pp. 1-4
    • Arita, M.1
  • 25
    • 0032472261 scopus 로고    scopus 로고
    • Is the geometry of nature fractal?
    • Avnir D., Bihan O., and Malcai O. Is the geometry of nature fractal?. Nature 279 5347 (1998) 39-40
    • (1998) Nature , vol.279 , Issue.5347 , pp. 39-40
    • Avnir, D.1    Bihan, O.2    Malcai, O.3
  • 26
    • 0037092917 scopus 로고    scopus 로고
    • Self-organized criticality on small world networks
    • de Arcangelis L., and Herrmann H.J. Self-organized criticality on small world networks. Physica A 308 1-4 (2002) 545-549
    • (2002) Physica A , vol.308 , Issue.1-4 , pp. 545-549
    • de Arcangelis, L.1    Herrmann, H.J.2
  • 28
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman M.E.J. The structure and function of complex networks. SIAM Rev 45 2 (2003) 167-256
    • (2003) SIAM Rev , vol.45 , Issue.2 , pp. 167-256
    • Newman, M.E.J.1
  • 29
    • 0029894013 scopus 로고    scopus 로고
    • The properties of known drugs. 1. Molecular frameworks
    • Bemis G.W., and Murcko M.A. The properties of known drugs. 1. Molecular frameworks. J Med Chem 39 15 (1996) 2887-2893
    • (1996) J Med Chem , vol.39 , Issue.15 , pp. 2887-2893
    • Bemis, G.W.1    Murcko, M.A.2
  • 30
    • 30144443247 scopus 로고    scopus 로고
    • Similarity networks of protein binding sites
    • Zhang Z., and Grigorov M.G. Similarity networks of protein binding sites. Proteins 62 (2006) 470-478
    • (2006) Proteins , vol.62 , pp. 470-478
    • Zhang, Z.1    Grigorov, M.G.2
  • 32
    • 33748373398 scopus 로고    scopus 로고
    • Scale-invariant structure of strongly conserved sequence in genomic intersections and alignments
    • Salerno W., Havlak P., and Miller J. Scale-invariant structure of strongly conserved sequence in genomic intersections and alignments. Proc Natl Acad Sci USA 103 35 (2006) 13121-13125
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.35 , pp. 13121-13125
    • Salerno, W.1    Havlak, P.2    Miller, J.3
  • 33
    • 0034721164 scopus 로고    scopus 로고
    • Error and attack tolerance of complex networks
    • Albert R., Jeong H., and Barabási A.-L. Error and attack tolerance of complex networks. Nature 406 (2000) 378-382
    • (2000) Nature , vol.406 , pp. 378-382
    • Albert, R.1    Jeong, H.2    Barabási, A.-L.3
  • 35
    • 34447521460 scopus 로고    scopus 로고
    • Human disease classification in the postgenomic era: a complex systems approach to human pathobiology
    • Loscalzo J., Kohane I., and Barabasi A. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3 (2007) 124
    • (2007) Mol Syst Biol , vol.3 , pp. 124
    • Loscalzo, J.1    Kohane, I.2    Barabasi, A.3
  • 36
    • 0036368719 scopus 로고    scopus 로고
    • Application of neural networks to large dataset QSAR, virtual screening and library design (invited review)
    • Bellavance-English L. (Ed), Humana Press, Totowa, New Jersey ISBN 0-89603-980-3
    • Winkler D.A., and Burden F.R. Application of neural networks to large dataset QSAR, virtual screening and library design (invited review). In: Bellavance-English L. (Ed). Combinatorial Chemistry Methods and Protocols (2002), Humana Press, Totowa, New Jersey ISBN 0-89603-980-3
    • (2002) Combinatorial Chemistry Methods and Protocols
    • Winkler, D.A.1    Burden, F.R.2
  • 37
    • 0003318015 scopus 로고    scopus 로고
    • Robust QSAR models from novel descriptors and Bayesian Regularized Neural Networks
    • Winkler D.A., and Burden F.R. Robust QSAR models from novel descriptors and Bayesian Regularized Neural Networks. Mol Simul 24 4-6 (2000) 243-258
    • (2000) Mol Simul , vol.24 , Issue.4-6 , pp. 243-258
    • Winkler, D.A.1    Burden, F.R.2
  • 38
    • 30044433043 scopus 로고    scopus 로고
    • The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states
    • Barrett C.L., Herring C.D., Reed J.L., and Palsson B.O. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc Natl Acad Sci USA 102 52 (2005) 19103-19108
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.52 , pp. 19103-19108
    • Barrett, C.L.1    Herring, C.D.2    Reed, J.L.3    Palsson, B.O.4
  • 39
    • 4344670936 scopus 로고    scopus 로고
    • Bow ties, metabolism and disease
    • Csete M., and Doyle J. Bow ties, metabolism and disease. Trends Biotechnol 22 9 (2004) 446-450
    • (2004) Trends Biotechnol , vol.22 , Issue.9 , pp. 446-450
    • Csete, M.1    Doyle, J.2
  • 40
    • 0036500834 scopus 로고    scopus 로고
    • Reverse engineering of biological complexity
    • Csete M.E., and Doyle J.C. Reverse engineering of biological complexity. Science 295 5560 (2002) 1664-1669
    • (2002) Science , vol.295 , Issue.5560 , pp. 1664-1669
    • Csete, M.E.1    Doyle, J.C.2
  • 41
    • 33344472563 scopus 로고    scopus 로고
    • Israeli N and Goldenfeld N. Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Phys Rev E 2006;73:026203-1-026203-17.
    • Israeli N and Goldenfeld N. Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Phys Rev E 2006;73:026203-1-026203-17.
  • 42
    • 0035500113 scopus 로고    scopus 로고
    • Overview: The future for stem cell research
    • Lovell-Badge R. Overview: The future for stem cell research. Nature 414 1 November (2001) 88-91
    • (2001) Nature , vol.414 , Issue.1 November , pp. 88-91
    • Lovell-Badge, R.1
  • 43
    • 34547697454 scopus 로고    scopus 로고
    • A new approach to the rationale discovery of polymeric biomaterials
    • Kohn J., Welsh W.J., and Knight D. A new approach to the rationale discovery of polymeric biomaterials. Biomaterials 28 29 (2007) 4171-4177
    • (2007) Biomaterials , vol.28 , Issue.29 , pp. 4171-4177
    • Kohn, J.1    Welsh, W.J.2    Knight, D.3
  • 44
    • 0035733690 scopus 로고    scopus 로고
    • Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae
    • Ge H., Liu Z., Church G.M., and Vidal M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29 (2001) 482-486
    • (2001) Nat Genet , vol.29 , pp. 482-486
    • Ge, H.1    Liu, Z.2    Church, G.M.3    Vidal, M.4
  • 47
    • 0037071391 scopus 로고    scopus 로고
    • Hematopoietic cytokines, transcription factors and lineage commitment
    • Zhu J., and Emerson S.G. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21 (2002) 3295-3313
    • (2002) Oncogene , vol.21 , pp. 3295-3313
    • Zhu, J.1    Emerson, S.G.2
  • 49
    • 25144465917 scopus 로고    scopus 로고
    • Chipping away at the embryonic stem cell network
    • Orkin S.H. Chipping away at the embryonic stem cell network. Cell 122 6 (2005) 828-830
    • (2005) Cell , vol.122 , Issue.6 , pp. 828-830
    • Orkin, S.H.1
  • 50
    • 0033200366 scopus 로고    scopus 로고
    • Transcriptional regulation of lymphocyte lineage commitment
    • Rothenberg E.V., Telfer J.C., and Anderson M.K. Transcriptional regulation of lymphocyte lineage commitment. BioEssays 21 9 (1999) 726-742
    • (1999) BioEssays , vol.21 , Issue.9 , pp. 726-742
    • Rothenberg, E.V.1    Telfer, J.C.2    Anderson, M.K.3
  • 51
    • 33846184752 scopus 로고    scopus 로고
    • Nanog and transcriptional networks in embryonic stem cell pluripotency
    • Pan G.J., and Thomson J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17 1 (2007) 42-49
    • (2007) Cell Res , vol.17 , Issue.1 , pp. 42-49
    • Pan, G.J.1    Thomson, J.A.2
  • 52
    • 34250356843 scopus 로고    scopus 로고
    • Oct4 and sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells
    • Wang Z.X., The C.H.-L., Kueh J.L.L., Lufkin T., Robson P., and Stanton L.W. Oct4 and sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells. J Biol Chem 282 17 (2007) 12822-12830
    • (2007) J Biol Chem , vol.282 , Issue.17 , pp. 12822-12830
    • Wang, Z.X.1    The, C.H.-L.2    Kueh, J.L.L.3    Lufkin, T.4    Robson, P.5    Stanton, L.W.6
  • 54
    • 33746256011 scopus 로고    scopus 로고
    • Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines
    • Player A., Wang Y., Bhattacharya B., Rao M., Puri R.K., and Kawasaki E.S. Comparisons between transcriptional regulation and RNA expression in human embryonic stem cell lines. Stem Cells Dev 15 3 (2006) 315-323
    • (2006) Stem Cells Dev , vol.15 , Issue.3 , pp. 315-323
    • Player, A.1    Wang, Y.2    Bhattacharya, B.3    Rao, M.4    Puri, R.K.5    Kawasaki, E.S.6
  • 55
    • 33749361475 scopus 로고    scopus 로고
    • Mechanisms controlling embryonic stem cell self-renewal and differentiation
    • Sun Y., Li H., Yang H., Rao M.S., and Zhan M. Mechanisms controlling embryonic stem cell self-renewal and differentiation. Crit Rev Eukaryot Gene Expr 16 3 (2006) 211-231
    • (2006) Crit Rev Eukaryot Gene Expr , vol.16 , Issue.3 , pp. 211-231
    • Sun, Y.1    Li, H.2    Yang, H.3    Rao, M.S.4    Zhan, M.5
  • 56
    • 10044268658 scopus 로고    scopus 로고
    • Molecular pathways regulating the self-renewal of hematopoietic stem cells
    • Stein M.I., Zhu J., and Emerson S.G. Molecular pathways regulating the self-renewal of hematopoietic stem cells. Exp Hematol 32 12 (2004) 1129-1136
    • (2004) Exp Hematol , vol.32 , Issue.12 , pp. 1129-1136
    • Stein, M.I.1    Zhu, J.2    Emerson, S.G.3
  • 57
    • 49149115509 scopus 로고    scopus 로고
    • Halley JD, Winkler DA, Burden FR. Towards a Rosetta stone for the stem cell genomestochastic gene expression, network architecture and external influences. Stem Cell Res 2008, in press.
    • Halley JD, Winkler DA, Burden FR. Towards a Rosetta stone for the stem cell genomestochastic gene expression, network architecture and external influences. Stem Cell Res 2008, in press.
  • 58
    • 33846013249 scopus 로고    scopus 로고
    • Transcription network: inferences from neural networks
    • Hart C.E., Mjolsness E., and Wold B.J. Transcription network: inferences from neural networks. PloS Comput Biol 2 (2006) 1592-1607
    • (2006) PloS Comput Biol , vol.2 , pp. 1592-1607
    • Hart, C.E.1    Mjolsness, E.2    Wold, B.J.3
  • 59
    • 46149103108 scopus 로고    scopus 로고
    • Winkler DA, Burden FR and Halley JD. Modelling and predicting gene expression and fate decisions in mouse embryogenesis. Stem Cell Res, 2008, submitted.
    • Winkler DA, Burden FR and Halley JD. Modelling and predicting gene expression and fate decisions in mouse embryogenesis. Stem Cell Res, 2008, submitted.
  • 60
    • 46149084822 scopus 로고    scopus 로고
    • Winkler DA, Burden FR and Halley JD. Using recursive networks to describe and predict gene expression and fate decisions during C. elegans embryogenesis. Artif Life, 2007, submitted.
    • Winkler DA, Burden FR and Halley JD. Using recursive networks to describe and predict gene expression and fate decisions during C. elegans embryogenesis. Artif Life, 2007, submitted.
  • 61
    • 34250857528 scopus 로고    scopus 로고
    • Ensemble feature selection: consistent descriptor subsets for multiple QSAR models
    • Dutta D., Guha R., Wild D., and Chen T. Ensemble feature selection: consistent descriptor subsets for multiple QSAR models. J Chem Inf Model 47 3 (2007) 989-997
    • (2007) J Chem Inf Model , vol.47 , Issue.3 , pp. 989-997
    • Dutta, D.1    Guha, R.2    Wild, D.3    Chen, T.4
  • 62
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu Y. A comparative study on feature selection methods for drug discovery. J Chem Inf Model 44 (2004) 1823-1828
    • (2004) J Chem Inf Model , vol.44 , pp. 1823-1828
    • Liu, Y.1
  • 63
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., and Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 23 19 (2007) 2507-2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 64
    • 0015417054 scopus 로고
    • Chance correlations in structure-activity studies using multiple regression analysis
    • Topliss J.G., and Costello R.J. Chance correlations in structure-activity studies using multiple regression analysis. J Med Chem 15 10 (1972) 1066-1068
    • (1972) J Med Chem , vol.15 , Issue.10 , pp. 1066-1068
    • Topliss, J.G.1    Costello, R.J.2
  • 65
    • 0023751431 scopus 로고
    • Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins
    • Cramer III R.D., Patterson D.E., and Bunce J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110 18 (1988) 5959-5967
    • (1988) J Am Chem Soc , vol.110 , Issue.18 , pp. 5959-5967
    • Cramer III, R.D.1    Patterson, D.E.2    Bunce, J.D.3
  • 67
    • 0035327359 scopus 로고    scopus 로고
    • QSAR in grossly underdetermined systems: opportunities and issues
    • Platt D.E., Parida L., Gao Y., Floratos A., and Rigoutsos I. QSAR in grossly underdetermined systems: opportunities and issues. IBM J Res Dev 45 3/4 (2001) 533-544
    • (2001) IBM J Res Dev , vol.45 , Issue.3-4 , pp. 533-544
    • Platt, D.E.1    Parida, L.2    Gao, Y.3    Floratos, A.4    Rigoutsos, I.5
  • 69
    • 0028466321 scopus 로고
    • Applications of high-resolution self-organizing maps to retrosynthetic and qsar analysis
    • Bienfait B. Applications of high-resolution self-organizing maps to retrosynthetic and qsar analysis. J Chem Inf Comput Sci 34 4 (1994) 890-898
    • (1994) J Chem Inf Comput Sci , vol.34 , Issue.4 , pp. 890-898
    • Bienfait, B.1
  • 70
    • 0031431303 scopus 로고    scopus 로고
    • Checking the projection display of multivariate data with colored graphs
    • Bienfait B., and Gasteiger J. Checking the projection display of multivariate data with colored graphs. J Mol Graph Model 15 4 (1997) 203-215
    • (1997) J Mol Graph Model , vol.15 , Issue.4 , pp. 203-215
    • Bienfait, B.1    Gasteiger, J.2
  • 71
    • 46149111842 scopus 로고    scopus 로고
    • Chemoinformatics in drug design
    • Gasteiger J. Chemoinformatics in drug design. Drugs Future 32 Suppl. (2007) A-2
    • (2007) Drugs Future , vol.32 , Issue.SUPPL
    • Gasteiger, J.1
  • 72
    • 0028452902 scopus 로고
    • The beauty of molecular-surfaces as revealed by self-organizing neural networks
    • Gasteiger J., Li X.Z., and Uschold A. The beauty of molecular-surfaces as revealed by self-organizing neural networks. J Mol Graph 12 2 (1994) 90-97
    • (1994) J Mol Graph , vol.12 , Issue.2 , pp. 90-97
    • Gasteiger, J.1    Li, X.Z.2    Uschold, A.3
  • 73
    • 33748242731 scopus 로고
    • Neural networks in chemistry
    • Gasteiger J., and Zupan J. Neural networks in chemistry. Angew Chem Int Ed Engl 32 4 (1993) 503-527
    • (1993) Angew Chem Int Ed Engl , vol.32 , Issue.4 , pp. 503-527
    • Gasteiger, J.1    Zupan, J.2
  • 75
    • 0038094430 scopus 로고    scopus 로고
    • From the top down: towards a predictive biology of signalling networks
    • Stark J., Callard R., and Hubank M. From the top down: towards a predictive biology of signalling networks. TRENDS in Biotechnol 21 7 (2003) 290-293
    • (2003) TRENDS in Biotechnol , vol.21 , Issue.7 , pp. 290-293
    • Stark, J.1    Callard, R.2    Hubank, M.3
  • 77
    • 46149122220 scopus 로고    scopus 로고
    • Burden FR, Winkler DA and Halley JD. Diagnosis of small round blue cell tumours using microarrays and sparse methods. Int J Cancer, 2008, submitted.
    • Burden FR, Winkler DA and Halley JD. Diagnosis of small round blue cell tumours using microarrays and sparse methods. Int J Cancer, 2008, submitted.
  • 79
    • 1642403354 scopus 로고    scopus 로고
    • Identification of genetic networks
    • Xiong M.M., Li J., and Fang X.Z. Identification of genetic networks. Genetics 166 2 (2004) 1037-1052
    • (2004) Genetics , vol.166 , Issue.2 , pp. 1037-1052
    • Xiong, M.M.1    Li, J.2    Fang, X.Z.3
  • 80
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 17 (2003) 2271-2282
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 81
    • 0348136789 scopus 로고    scopus 로고
    • Reverse engineering of genetic networks with Bayesian networks
    • Husmeier D. Reverse engineering of genetic networks with Bayesian networks. Biochem Soc Trans 31 (2003) 1516-1518
    • (2003) Biochem Soc Trans , vol.31 , pp. 1516-1518
    • Husmeier, D.1
  • 82
    • 34250013587 scopus 로고    scopus 로고
    • Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
    • Huang Z., Li J., Su H., Watts G.S., and Chen H. Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining. Decision Support Syst 43 4 (2007) 1207-1225
    • (2007) Decision Support Syst , vol.43 , Issue.4 , pp. 1207-1225
    • Huang, Z.1    Li, J.2    Su, H.3    Watts, G.S.4    Chen, H.5
  • 83
    • 34248212152 scopus 로고    scopus 로고
    • A network model for gene regulation
    • Gupta R.R., and Achenie L.E.K. A network model for gene regulation. Comput Chem Eng 31 8 (2007) 950-961
    • (2007) Comput Chem Eng , vol.31 , Issue.8 , pp. 950-961
    • Gupta, R.R.1    Achenie, L.E.K.2
  • 84
    • 0034850921 scopus 로고    scopus 로고
    • Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation
    • Huang S. Genomics, complexity and drug discovery: insights from Boolean network models of cellular regulation. Pharmacogenomics 2 3 (2001) 203-222
    • (2001) Pharmacogenomics , vol.2 , Issue.3 , pp. 203-222
    • Huang, S.1
  • 85
    • 3343018400 scopus 로고    scopus 로고
    • The ensemble approach to understand genetic regulatory networks
    • Kauffman S. The ensemble approach to understand genetic regulatory networks. Physica a-Stat Mech App 340 4 (2004) 733-740
    • (2004) Physica a-Stat Mech App , vol.340 , Issue.4 , pp. 733-740
    • Kauffman, S.1
  • 86
    • 0345598902 scopus 로고    scopus 로고
    • Random Boolean network models and the yeast transcriptional network
    • Kauffman S., Peterson C., Samuelsson B., and Troein C. Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci USA 100 25 (2003) 14796-14799
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.25 , pp. 14796-14799
    • Kauffman, S.1    Peterson, C.2    Samuelsson, B.3    Troein, C.4
  • 87
    • 84949434688 scopus 로고    scopus 로고
    • Cheng J and Greiner R. Learning Bayesian belief network classifiers algorithms and system. Advances in Artificial Intelligence Proceeding of the 14th Biennial Conference of the Canadian Society for Computational Studies of Intelligence (Stroulia E and Matwin S, eds), Ottawa, 7-9 June 2001, Springer-Verlag, Berlin, pp. 141-151.
    • Cheng J and Greiner R. Learning Bayesian belief network classifiers algorithms and system. Advances in Artificial Intelligence Proceeding of the 14th Biennial Conference of the Canadian Society for Computational Studies of Intelligence (Stroulia E and Matwin S, eds), Ottawa, 7-9 June 2001, Springer-Verlag, Berlin, pp. 141-151.
  • 89
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., and Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 7 3-4 (2000) 601-620
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 90
    • 22944470790 scopus 로고    scopus 로고
    • A gene network model for developing cell lineages
    • Geard N., and Wiles J. A gene network model for developing cell lineages. Artif Life 11 3 (2005) 249-267
    • (2005) Artif Life , vol.11 , Issue.3 , pp. 249-267
    • Geard, N.1    Wiles, J.2
  • 91
    • 28844437907 scopus 로고    scopus 로고
    • Cleavage pattern and emerging asymmetry of the mouse embryo
    • Zernicka-Goetz M. Cleavage pattern and emerging asymmetry of the mouse embryo. Nat Rev Mol Cell Biol 6 December (2005) 919-928
    • (2005) Nat Rev Mol Cell Biol , vol.6 , Issue.December , pp. 919-928
    • Zernicka-Goetz, M.1
  • 92
    • 0347763875 scopus 로고    scopus 로고
    • Dynamics of global gene expression changes during mouse preimplantation development
    • Hamatani T., Carter M., Sharov A., and Ko M. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6 1 (2004) 117-131
    • (2004) Dev Cell , vol.6 , Issue.1 , pp. 117-131
    • Hamatani, T.1    Carter, M.2    Sharov, A.3    Ko, M.4
  • 93
    • 33846013249 scopus 로고    scopus 로고
    • Connectivity in the yeast cell cycle transcription network: inferences from neural networks
    • Hart C.E., Mjolsness E., and Wold B.J. Connectivity in the yeast cell cycle transcription network: inferences from neural networks. Plos Comput Biol 2 12 (2006) 1592-1607
    • (2006) Plos Comput Biol , vol.2 , Issue.12 , pp. 1592-1607
    • Hart, C.E.1    Mjolsness, E.2    Wold, B.J.3
  • 94
    • 0035577339 scopus 로고    scopus 로고
    • The broader applications of neural and genetic modelling methods
    • Winkler D. The broader applications of neural and genetic modelling methods. Drug Discov Today 6 23 (2001) 1198-1199
    • (2001) Drug Discov Today , vol.6 , Issue.23 , pp. 1198-1199
    • Winkler, D.1
  • 95
    • 2942618672 scopus 로고    scopus 로고
    • Selecting compounds for focused screening using linear discriminant analysis and artificial neural networks
    • Ford M.G., Pitt W.R., and Whitley D.C. Selecting compounds for focused screening using linear discriminant analysis and artificial neural networks. J Mol Graph Model 22 6 (2004) 467-472
    • (2004) J Mol Graph Model , vol.22 , Issue.6 , pp. 467-472
    • Ford, M.G.1    Pitt, W.R.2    Whitley, D.C.3
  • 96
    • 0032624725 scopus 로고    scopus 로고
    • New QSAR methods applied to structure-activity mapping and combinatorial chemistry
    • Burden F.R., and Winkler D.A. New QSAR methods applied to structure-activity mapping and combinatorial chemistry. J Chem Inf Comput Sci 39 2 (1999) 236-242
    • (1999) J Chem Inf Comput Sci , vol.39 , Issue.2 , pp. 236-242
    • Burden, F.R.1    Winkler, D.A.2
  • 97
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using Bayesian regularized neural networks
    • Burden F.R., and Winkler D.A. Robust QSAR models using Bayesian regularized neural networks. J Med Chem 42 16 (1999) 3183-3187
    • (1999) J Med Chem , vol.42 , Issue.16 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 98
    • 0036628567 scopus 로고    scopus 로고
    • On the use of neural network ensembles in QSAR and QSPR
    • Agrafiotis D.K., Cedeno W., and Lobanov V.S. On the use of neural network ensembles in QSAR and QSPR. J Chem Inf Comput Sci 42 4 (2002) 903-911
    • (2002) J Chem Inf Comput Sci , vol.42 , Issue.4 , pp. 903-911
    • Agrafiotis, D.K.1    Cedeno, W.2    Lobanov, V.S.3
  • 99
    • 0027145573 scopus 로고
    • Unified framework for using neural networks to build QSARs
    • Ajay A. Unified framework for using neural networks to build QSARs. J Med Chem 36 23 (1993) 3565-3571
    • (1993) J Med Chem , vol.36 , Issue.23 , pp. 3565-3571
    • Ajay, A.1
  • 101
    • 34047170242 scopus 로고    scopus 로고
    • Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach
    • Di Fenza A., Alagona G., Ghio C., Leonardi R., Giolitti A., and Madami A. Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach. J Comput Aided Mol Des 21 4 (2007) 207-221
    • (2007) J Comput Aided Mol Des , vol.21 , Issue.4 , pp. 207-221
    • Di Fenza, A.1    Alagona, G.2    Ghio, C.3    Leonardi, R.4    Giolitti, A.5    Madami, A.6
  • 103
    • 2942620237 scopus 로고    scopus 로고
    • Building predictive ADMET models for early decisions in drug discovery
    • Penzotti J.E., Landrum G.A., and Putta S. Building predictive ADMET models for early decisions in drug discovery. Curr Opin Drug Discov Devel 7 1 (2004) 49-61
    • (2004) Curr Opin Drug Discov Devel , vol.7 , Issue.1 , pp. 49-61
    • Penzotti, J.E.1    Landrum, G.A.2    Putta, S.3
  • 104
    • 2942555037 scopus 로고    scopus 로고
    • Applying data mining techniques to library design, lead generation and lead optimization
    • Weaver D.C. Applying data mining techniques to library design, lead generation and lead optimization. Curr Opin Chem Biol 8 3 (2004) 264-270
    • (2004) Curr Opin Chem Biol , vol.8 , Issue.3 , pp. 264-270
    • Weaver, D.C.1
  • 105
    • 0142026020 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology
    • Perkins R., Fang H., Tong W., and Welsh W.J. Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ Toxicol Chem 22 8 (2003) 1666-1679
    • (2003) Environ Toxicol Chem , vol.22 , Issue.8 , pp. 1666-1679
    • Perkins, R.1    Fang, H.2    Tong, W.3    Welsh, W.J.4
  • 106
    • 2942538155 scopus 로고    scopus 로고
    • Modelling blood-brain barrier partitioning using Bayesian neural nets
    • Winkler D.A., and Burden F.R. Modelling blood-brain barrier partitioning using Bayesian neural nets. J Mol Graph Model 22 6 (2004) 499-505
    • (2004) J Mol Graph Model , vol.22 , Issue.6 , pp. 499-505
    • Winkler, D.A.1    Burden, F.R.2
  • 107
    • 9744267439 scopus 로고    scopus 로고
    • Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network
    • Polley M.J., Winkler D.A., and Burden F.R. Broad-based quantitative structure-activity relationship modeling of potency and selectivity of farnesyltransferase inhibitors using a Bayesian regularized neural network. J Med Chem 47 25 (2004) 6230-6238
    • (2004) J Med Chem , vol.47 , Issue.25 , pp. 6230-6238
    • Polley, M.J.1    Winkler, D.A.2    Burden, F.R.3
  • 108
    • 29144484633 scopus 로고    scopus 로고
    • Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks
    • Polley M.J., Burden F.R., and Winkler D.A. Predictive human intestinal absorption QSAR models using Bayesian regularized neural networks. Aust J Chem 58 12 (2005) 859-863
    • (2005) Aust J Chem , vol.58 , Issue.12 , pp. 859-863
    • Polley, M.J.1    Burden, F.R.2    Winkler, D.A.3
  • 109
    • 0034094124 scopus 로고    scopus 로고
    • A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
    • Burden F.R., and Winkler D.A. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem Res Toxicol 13 6 (2000) 436-440
    • (2000) Chem Res Toxicol , vol.13 , Issue.6 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 110
    • 20444386168 scopus 로고    scopus 로고
    • Predictive Bayesian neural network models of MHC class II peptide binding
    • Burden F.R., and Winkler D.A. Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model 23 6 (2005) 481-489
    • (2005) J Mol Graph Model , vol.23 , Issue.6 , pp. 481-489
    • Burden, F.R.1    Winkler, D.A.2
  • 111
    • 30744458142 scopus 로고    scopus 로고
    • Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks
    • Caballero J., and Fernandez M. Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks. J Mol Model 12 2 (2006) 168-181
    • (2006) J Mol Model , vol.12 , Issue.2 , pp. 168-181
    • Caballero, J.1    Fernandez, M.2
  • 112
    • 33646488015 scopus 로고    scopus 로고
    • 2D autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks
    • Caballero J., Garriga M., and Fernandez M. 2D autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks. Bioorg Med Chem 14 10 (2006) 3330-3340
    • (2006) Bioorg Med Chem , vol.14 , Issue.10 , pp. 3330-3340
    • Caballero, J.1    Garriga, M.2    Fernandez, M.3
  • 113
    • 34547093412 scopus 로고    scopus 로고
    • QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives
    • Fernandez M., and Caballero J. QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives. Bioorg Med Chem 15 18 (2007) 6298-6310
    • (2007) Bioorg Med Chem , vol.15 , Issue.18 , pp. 6298-6310
    • Fernandez, M.1    Caballero, J.2
  • 114
    • 33947168866 scopus 로고    scopus 로고
    • QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties
    • Fernandez M., and Caballero J. QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties. J Mol Model 13 4 (2007) 465-476
    • (2007) J Mol Model , vol.13 , Issue.4 , pp. 465-476
    • Fernandez, M.1    Caballero, J.2
  • 115
    • 33845769362 scopus 로고    scopus 로고
    • Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic Neural Networks and ensemble averaging
    • Fernandez M., Carreiras M.C., Marco J.L., and Caballero J. Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic Neural Networks and ensemble averaging. J Enzyme Inhib Med Chem 21 6 (2006) 647-661
    • (2006) J Enzyme Inhib Med Chem , vol.21 , Issue.6 , pp. 647-661
    • Fernandez, M.1    Carreiras, M.C.2    Marco, J.L.3    Caballero, J.4
  • 116
    • 27744456972 scopus 로고    scopus 로고
    • Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches
    • Gonzalez M.P., Caballero J., Tundidor-Camba A., Helguera A.M., and Fernández M. Modeling of farnesyltransferase inhibition by some thiol and non-thiol peptidomimetic inhibitors using genetic neural networks and RDF approaches. Bioorg Med Chem 14 1 (2006) 200-213
    • (2006) Bioorg Med Chem , vol.14 , Issue.1 , pp. 200-213
    • Gonzalez, M.P.1    Caballero, J.2    Tundidor-Camba, A.3    Helguera, A.M.4    Fernández, M.5
  • 117
    • 33646447689 scopus 로고    scopus 로고
    • Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North Carolina
    • Xu M., Zeng G., Xu X., Huang G., Jiang R., and Sun W. Application of Bayesian regularized BP neural network model for trend analysis, acidity and chemical composition of precipitation in North Carolina. Water Air Soil Pollut 172 1-4 (2006) 167-184
    • (2006) Water Air Soil Pollut , vol.172 , Issue.1-4 , pp. 167-184
    • Xu, M.1    Zeng, G.2    Xu, X.3    Huang, G.4    Jiang, R.5    Sun, W.6
  • 118
    • 33644598456 scopus 로고    scopus 로고
    • Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data - A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake
    • Xu M., Zeng G.-M., Xu X.-Y., Huang G.-H., Sun W., and Jiang X.-Y. Application of Bayesian regularized BP neural network model for analysis of aquatic ecological data - A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake. J Environ Sci (China) 17 6 (2005) 946-952
    • (2005) J Environ Sci (China) , vol.17 , Issue.6 , pp. 946-952
    • Xu, M.1    Zeng, G.-M.2    Xu, X.-Y.3    Huang, G.-H.4    Sun, W.5    Jiang, X.-Y.6
  • 119
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • Niculescu S.P. Artificial neural networks and genetic algorithms in QSAR. J Mol Struct Theochem 622 1-2 (2003) 71-83
    • (2003) J Mol Struct Theochem , vol.622 , Issue.1-2 , pp. 71-83
    • Niculescu, S.P.1
  • 120
    • 34848902649 scopus 로고    scopus 로고
    • Intelligent computation of moisture content in shrinkable biomaterials
    • Martynenko A., Yang S.X., and Pan L. Intelligent computation of moisture content in shrinkable biomaterials. Drying Technol 25 10 (2007) 1667-1676
    • (2007) Drying Technol , vol.25 , Issue.10 , pp. 1667-1676
    • Martynenko, A.1    Yang, S.X.2    Pan, L.3
  • 121
    • 13744264059 scopus 로고    scopus 로고
    • Prediction of elasticity constants in small biomaterial samples such as bone. A comparison between classical optimization techniques and identification with artificial neural networks
    • Lucchinetti E., and Stussi E. Prediction of elasticity constants in small biomaterial samples such as bone. A comparison between classical optimization techniques and identification with artificial neural networks. Proc Inst Mech Eng [H] 218 H6 (2004) 389-405
    • (2004) Proc Inst Mech Eng [H] , vol.218 , Issue.H6 , pp. 389-405
    • Lucchinetti, E.1    Stussi, E.2
  • 122
    • 0343410018 scopus 로고    scopus 로고
    • Modelling of thermal degradation process dynamics of bioproducts using artificial neural networks
    • Kaminski W., Strumiłło P., Tomczak E., and Zbicinsk I. Modelling of thermal degradation process dynamics of bioproducts using artificial neural networks. J Syst Eng 6 3 (1996) 159-165
    • (1996) J Syst Eng , vol.6 , Issue.3 , pp. 159-165
    • Kaminski, W.1    Strumiłło, P.2    Tomczak, E.3    Zbicinsk, I.4
  • 123
    • 34548508215 scopus 로고    scopus 로고
    • Prediction of fibrinogen adsorption for biodegradable polymers: integration of molecular dynamics and surrogate modeling
    • Gubskaya A.V., Kholodovych V., Knight D., Kohn J., and Welsh W.J. Prediction of fibrinogen adsorption for biodegradable polymers: integration of molecular dynamics and surrogate modeling. Polymer 48 19 (2007) 5788-5801
    • (2007) Polymer , vol.48 , Issue.19 , pp. 5788-5801
    • Gubskaya, A.V.1    Kholodovych, V.2    Knight, D.3    Kohn, J.4    Welsh, W.J.5
  • 124
    • 34548499067 scopus 로고    scopus 로고
    • Glass transition temperature prediction of polymers through the mass-per-flexible-bond principle
    • Schut J., Bolikal D., Khan I.J., Pesnell A., Rege A., Rojas R., Sheihet L., Murthy N.S., and Kohn J. Glass transition temperature prediction of polymers through the mass-per-flexible-bond principle. Polymer 48 20 (2007) 6115-6124
    • (2007) Polymer , vol.48 , Issue.20 , pp. 6115-6124
    • Schut, J.1    Bolikal, D.2    Khan, I.J.3    Pesnell, A.4    Rege, A.5    Rojas, R.6    Sheihet, L.7    Murthy, N.S.8    Kohn, J.9
  • 125
    • 18644369039 scopus 로고    scopus 로고
    • Predicting fibrinogen adsorption to polymeric surfaces in silico: a combined method approach
    • Smith J.R., Kholodovych V., Knight D., Kohn J., and Welsh W.J. Predicting fibrinogen adsorption to polymeric surfaces in silico: a combined method approach. Polymer 46 12 (2005) 4296-4306
    • (2005) Polymer , vol.46 , Issue.12 , pp. 4296-4306
    • Smith, J.R.1    Kholodovych, V.2    Knight, D.3    Kohn, J.4    Welsh, W.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.