-
1
-
-
0002227089
-
An interval classifier for database mining applications
-
Agrawal, R., S. Ghosh, T. Imielinski, B. Iyer and A. Swami (1992). An interval classifier for database mining applications. In Proceedings of the 18th International Conference on Very Large Databases, pp. 560-573.
-
(1992)
Proceedings of the 18th International Conference on Very Large Databases
, pp. 560-573
-
-
Agrawal, R.1
Ghosh, S.2
Imielinski, T.3
Iyer, B.4
Swami, A.5
-
2
-
-
0030819669
-
Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
-
Blum, A. (1997). Empirical support for winnow and weighted-majority algorithms: results on a calendar scheduling domain. Machine Learning, 26, 5-23.
-
(1997)
Machine Learning
, vol.26
, pp. 5-23
-
-
Blum, A.1
-
3
-
-
85041770843
-
-
Cohen, W. (1996). Learning rules that classify e-mail. In Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access. Menlo Park, CA. AAAI Press, Technical Report SS96-05. pp. 18-25.
-
Cohen, W. (1996). Learning rules that classify e-mail. In Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access. Menlo Park, CA. AAAI Press, Technical Report SS96-05. pp. 18-25.
-
-
-
-
4
-
-
84947592660
-
Distributed pasting of small Votes
-
Chawla, N.V., L.O. Hall, K.W. Bowyer, TE. Moore and W.P. Kegelmeyer (2002). Distributed pasting of small Votes. In Multiple. Classifier Systems, pp. 52-61.
-
(2002)
Multiple. Classifier Systems
, pp. 52-61
-
-
Chawla, N.V.1
Hall, L.O.2
Bowyer, K.W.3
Moore, T.E.4
Kegelmeyer, W.P.5
-
7
-
-
23044519492
-
RainForest: A framework for fast decision tree construction of large datasets
-
Gehrke, J., R. Ramakrishnan and V. Ganti (2000). RainForest: a framework for fast decision tree construction of large datasets. Data Mining and Knowledge Discovery, 4(2/3), 127-162.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 127-162
-
-
Gehrke, J.1
Ramakrishnan, R.2
Ganti, V.3
-
9
-
-
0032139819
-
Extracting hidden context
-
Harries, M.B., C. Sammut and K. Horn (1998). Extracting hidden context. Machine Learning, 32(2), 101-126.
-
(1998)
Machine Learning
, vol.32
, Issue.2
, pp. 101-126
-
-
Harries, M.B.1
Sammut, C.2
Horn, K.3
-
10
-
-
42149099846
-
-
Master thesis. Institute of Information Education, National University of Tainan, Taiwan, R.O.C
-
Hsieh, C.H. (2004). An Efficient Approach for Mining Concept-Drifting Data Streams. Master thesis. Institute of Information Education, National University of Tainan, Taiwan, R.O.C.
-
(2004)
An Efficient Approach for Mining Concept-Drifting Data Streams
-
-
Hsieh, C.H.1
-
12
-
-
0347371520
-
Application of data mining technique for diagnosis of posterior uveal melanoma
-
Jegelevičius, D., A. Lukoševičius, A. Paunksnis and V. Barzdziukas (2002). Application of data mining technique for diagnosis of posterior uveal melanoma. Informatica, 13(4), 455-464.
-
(2002)
Informatica
, vol.13
, Issue.4
, pp. 455-464
-
-
Jegelevičius, D.1
Lukoševičius, A.2
Paunksnis, A.3
Barzdziukas, V.4
-
14
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz, N., and S. Stephen (2002). The class imbalance problem: a systematic study. Intelligent Data Analysis, 6(5), 429-450.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-450
-
-
Japkowicz, N.1
Stephen, S.2
-
18
-
-
0141741870
-
Learning time-varying concepts
-
Morgan Kaufmann, San Francisco, CA. pp
-
Kuh, A., T. Petsche and R. L. Rivest (1991). Learning time-varying concepts. In In Advances in Neural Information Processing Systems 3, vol. 3. Morgan Kaufmann, San Francisco, CA. pp. 183-189.
-
(1991)
In Advances in Neural Information Processing Systems 3
, vol.3
, pp. 183-189
-
-
Kuh, A.1
Petsche, T.2
Rivest, R.L.3
-
19
-
-
0009300196
-
Adaptive information filtering: Learning in the presence of concept drifts
-
Menlo Park, California, pp
-
Klinkenberg, R., and I. Renz (1998). Adaptive information filtering: learning in the presence of concept drifts. In Proceedings of International Conference on Machine Learning. Menlo Park, California, pp. 33-40.
-
(1998)
Proceedings of International Conference on Machine Learning
, pp. 33-40
-
-
Klinkenberg, R.1
Renz, I.2
-
20
-
-
0034299906
-
Selecting examples for partial memory learning
-
Maloof, M.A., and R.S. Michalski (2000). Selecting examples for partial memory learning. Machine Learning, 41(1), 27-52.
-
(2000)
Machine Learning
, vol.41
, Issue.1
, pp. 27-52
-
-
Maloof, M.A.1
Michalski, R.S.2
-
21
-
-
0141592441
-
Incremental rule learning with partial instance memory for changing concepts
-
IEEE Press, Los Alamitos, CA
-
Maloof, M. (2003). Incremental rule learning with partial instance memory for changing concepts. In Proceedings of the International Joint Conference on Neural Networks. IEEE Press, Los Alamitos, CA.
-
(2003)
Proceedings of the International Joint Conference on Neural Networks
-
-
Maloof, M.1
-
23
-
-
33749319717
-
Experiments with hybrid genetic algorithm for the grey pattern problem
-
Misevicius, A. (2006). Experiments with hybrid genetic algorithm for the grey pattern problem. Informatica, 17(2), 237-258.
-
(2006)
Informatica
, vol.17
, Issue.2
, pp. 237-258
-
-
Misevicius, A.1
-
26
-
-
18644371850
-
Text categorization using neural networks initialized with decision trees
-
emeikis, N., I. Skučas, V. Melninkaité (2004).Text categorization using neural networks initialized with decision trees. Informatica, 15(4), 551-564.
-
(2004)
Informatica
, vol.15
, Issue.4
, pp. 551-564
-
-
emeikis, N.1
Skučas, I.2
Melninkaité, V.3
-
31
-
-
77952642202
-
Incremental induction of decision trees
-
Utgoff, P.E. (1989). Incremental induction of decision trees. Machine Learning, 4(2), 161-186.
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 161-186
-
-
Utgoff, P.E.1
-
32
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
Washington, DC. pp
-
Wang, H., W. Fan, P.S. Yu and J. Han (2003). Mining concept-drifting data streams using ensemble classifiers. In Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC. pp. 226-235.
-
(2003)
Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
33
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer, G., and M. Kubat (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(1), 69-101.
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|