메뉴 건너뛰기




Volumn 41, Issue 1, 2000, Pages 27-52

Selecting examples for partial memory learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED ENGINEERING; COMPUTER SIMULATION; DECISION THEORY; LEARNING ALGORITHMS; PROBLEM SOLVING;

EID: 0034299906     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007661119649     Document Type: Article
Times cited : (114)

References (35)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 3
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • Blake, C., Keogh, E., & Merz, C. (1998). UCI repository of machine learning databases [On-line]. Department of Information and Computer Sciences, University of California, Irvine. Available: http://www. ics.uci.edu/~mlearn/mlrepository.html
    • (1998) UCI Repository of Machine Learning Databases [On-line]
    • Blake, C.1    Keogh, E.2    Merz, C.3
  • 4
  • 6
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P. & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 8
    • 0342494125 scopus 로고
    • An incremental deductive strategy for controlling constructive induction in learning from examples
    • Elio, R. & Watanabe, L. (1991). An incremental deductive strategy for controlling constructive induction in learning from examples. Machine Learning, 7, 7-44.
    • (1991) Machine Learning , vol.7 , pp. 7-44
    • Elio, R.1    Watanabe, L.2
  • 9
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 14
    • 0005544513 scopus 로고
    • Machine learning as an experimental science
    • Dietterich, T. & Shavlik, J. (Eds.), San Francisco, CA: Morgan Kaufmann
    • Kibler, D. & Langley, P. (1990). Machine learning as an experimental science. In Dietterich, T. & Shavlik, J. (Eds.), Readings in Machine Learning. San Francisco, CA: Morgan Kaufmann.
    • (1990) Readings in Machine Learning
    • Kibler, D.1    Langley, P.2
  • 15
    • 38249013971 scopus 로고
    • FAVORIT: Concept formation with ageing of knowledge
    • Krizakova, I. & Kubat, M. (1992). FAVORIT: Concept formation with ageing of knowledge. Pattern Recognition Letters, 13, 19-25.
    • (1992) Pattern Recognition Letters , vol.13 , pp. 19-25
    • Krizakova, I.1    Kubat, M.2
  • 16
    • 0026844245 scopus 로고
    • Forgetting and aging of knowledge in concept formation
    • Kubat, M. & Krizakova, I. (1992). Forgetting and aging of knowledge in concept formation. Applied Artificial Intelligence, 6, 195-206.
    • (1992) Applied Artificial Intelligence , vol.6 , pp. 195-206
    • Kubat, M.1    Krizakova, I.2
  • 17
    • 0000166613 scopus 로고
    • Experiments with incremental concept formation: UNIMEM
    • Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine Learning, 2, 103-138.
    • (1987) Machine Learning , vol.2 , pp. 103-138
    • Lebowitz, M.1
  • 18
    • 0000511449 scopus 로고
    • Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow
    • San Francisco, CA: Morgan Kaufmann
    • Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory (pp. 147-156). San Francisco, CA: Morgan Kaufmann.
    • (1991) Proceedings of the Fourth Annual Workshop on Computational Learning Theory , pp. 147-156
    • Littlestone, N.1
  • 19
    • 0141741872 scopus 로고    scopus 로고
    • Doctoral Dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA
    • Maloof, M. (1996). Progressive partial memory learning. Doctoral Dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA.
    • (1996) Progressive Partial Memory Learning
    • Maloof, M.1
  • 22
    • 0030778013 scopus 로고    scopus 로고
    • Learning symbolic descriptions of shape for object recognition in X-ray images
    • Maloof, M. & Michalski, R. (1997). Learning symbolic descriptions of shape for object recognition in X-ray images. Expert Systems with Applications, 12(1), 11-20.
    • (1997) Expert Systems with Applications , vol.12 , Issue.1 , pp. 11-20
    • Maloof, M.1    Michalski, R.2
  • 25
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski, R., Carbonell, J., & Mitchell, T. (Eds.), San Francisco, CA: Morgan Kaufmann
    • Michalski, R. (1983). A theory and methodology of inductive learning. In Michalski, R., Carbonell, J., & Mitchell, T. (Eds.), Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann.
    • (1983) Machine Learning: an Artificial Intelligence Approach , vol.1
    • Michalski, R.1
  • 26
    • 0141629996 scopus 로고
    • 1 hypotheses: The underlying methodology and the description of program AQ-11
    • Department of Computer Science, University of Illinois, Urbana-Champaign
    • 1 hypotheses: The underlying methodology and the description of program AQ-11. Technical report UIUCDCS-F-83-905, Department of Computer Science, University of Illinois, Urbana-Champaign.
    • (1983) Technical Report UIUCDCS-F-83-905
    • Michalski, R.1    Larson, J.2
  • 28
    • 0006033840 scopus 로고
    • Incremental learning of concept descriptions: A method and experimental results
    • Hayes, J., Michie, D., & Richards, J. (Eds.), Oxford: Clarendon Press
    • Reinke, R. & Michalski, R. (1988). Incremental learning of concept descriptions: A method and experimental results. In Hayes, J., Michie, D., & Richards, J. (Eds.), Machine Intelligence 11. Oxford: Clarendon Press.
    • (1988) Machine Intelligence , vol.11
    • Reinke, R.1    Michalski, R.2
  • 33
    • 0031164523 scopus 로고    scopus 로고
    • Tracking context changes through meta-learning
    • Widmer, G. (1997). Tracking context changes through meta-learning. Machine Learning, 27, 259-286.
    • (1997) Machine Learning , vol.27 , pp. 259-286
    • Widmer, G.1
  • 34
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G. & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23, 69-101.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.