-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
Albert, M.3
-
3
-
-
0003408496
-
-
Department of Information and Computer Sciences, University of California, Irvine
-
Blake, C., Keogh, E., & Merz, C. (1998). UCI repository of machine learning databases [On-line]. Department of Information and Computer Sciences, University of California, Irvine. Available: http://www. ics.uci.edu/~mlearn/mlrepository.html
-
(1998)
UCI Repository of Machine Learning Databases [On-line]
-
-
Blake, C.1
Keogh, E.2
Merz, C.3
-
5
-
-
0343363488
-
AQ-17 - A multistrategy learning system: The method and user's guide
-
Fairfax, VA: George Mason University
-
Bloedorn, E., Wnek, J., Michalski, R., & Kaufman, K. (1993). AQ-17 - A multistrategy learning system: The method and user's guide. Reports of the Machine Learning and Inference Laboratory MLI93-12. Fairfax, VA: George Mason University.
-
(1993)
Reports of the Machine Learning and Inference Laboratory MLI93-12
-
-
Bloedorn, E.1
Wnek, J.2
Michalski, R.3
Kaufman, K.4
-
6
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P. & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.
-
(1989)
Machine Learning
, vol.3
, pp. 261-284
-
-
Clark, P.1
Niblett, T.2
-
8
-
-
0342494125
-
An incremental deductive strategy for controlling constructive induction in learning from examples
-
Elio, R. & Watanabe, L. (1991). An incremental deductive strategy for controlling constructive induction in learning from examples. Machine Learning, 7, 7-44.
-
(1991)
Machine Learning
, vol.7
, pp. 7-44
-
-
Elio, R.1
Watanabe, L.2
-
9
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179-188.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.1
-
11
-
-
85152537802
-
Trading simplicity and coverage in incremental concept learning
-
San Francisco, CA: Morgan Kaufmann
-
Iba, W., Woogulis, J., & Langley, P. (1988). Trading simplicity and coverage in incremental concept learning. In Proceedings of the Fifth International Conference on Machine Learning (pp. 73-79). San Francisco, CA: Morgan Kaufmann.
-
(1988)
Proceedings of the Fifth International Conference on Machine Learning
, pp. 73-79
-
-
Iba, W.1
Woogulis, J.2
Langley, P.3
-
14
-
-
0005544513
-
Machine learning as an experimental science
-
Dietterich, T. & Shavlik, J. (Eds.), San Francisco, CA: Morgan Kaufmann
-
Kibler, D. & Langley, P. (1990). Machine learning as an experimental science. In Dietterich, T. & Shavlik, J. (Eds.), Readings in Machine Learning. San Francisco, CA: Morgan Kaufmann.
-
(1990)
Readings in Machine Learning
-
-
Kibler, D.1
Langley, P.2
-
15
-
-
38249013971
-
FAVORIT: Concept formation with ageing of knowledge
-
Krizakova, I. & Kubat, M. (1992). FAVORIT: Concept formation with ageing of knowledge. Pattern Recognition Letters, 13, 19-25.
-
(1992)
Pattern Recognition Letters
, vol.13
, pp. 19-25
-
-
Krizakova, I.1
Kubat, M.2
-
16
-
-
0026844245
-
Forgetting and aging of knowledge in concept formation
-
Kubat, M. & Krizakova, I. (1992). Forgetting and aging of knowledge in concept formation. Applied Artificial Intelligence, 6, 195-206.
-
(1992)
Applied Artificial Intelligence
, vol.6
, pp. 195-206
-
-
Kubat, M.1
Krizakova, I.2
-
17
-
-
0000166613
-
Experiments with incremental concept formation: UNIMEM
-
Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine Learning, 2, 103-138.
-
(1987)
Machine Learning
, vol.2
, pp. 103-138
-
-
Lebowitz, M.1
-
18
-
-
0000511449
-
Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow
-
San Francisco, CA: Morgan Kaufmann
-
Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory (pp. 147-156). San Francisco, CA: Morgan Kaufmann.
-
(1991)
Proceedings of the Fourth Annual Workshop on Computational Learning Theory
, pp. 147-156
-
-
Littlestone, N.1
-
19
-
-
0141741872
-
-
Doctoral Dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA
-
Maloof, M. (1996). Progressive partial memory learning. Doctoral Dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA.
-
(1996)
Progressive Partial Memory Learning
-
-
Maloof, M.1
-
20
-
-
0041968081
-
Recognizing blasting caps in X-ray images
-
San Francisco, CA: Morgan Kaufmann
-
Maloof, M., Duric, Z., Michalski, R., & Rosenfeld, A. (1996). Recognizing blasting caps in X-ray images. In Proceedings of the Image Understanding Workshop (pp. 1257-1261). San Francisco, CA: Morgan Kaufmann.
-
(1996)
Proceedings of the Image Understanding Workshop
, pp. 1257-1261
-
-
Maloof, M.1
Duric, Z.2
Michalski, R.3
Rosenfeld, A.4
-
22
-
-
0030778013
-
Learning symbolic descriptions of shape for object recognition in X-ray images
-
Maloof, M. & Michalski, R. (1997). Learning symbolic descriptions of shape for object recognition in X-ray images. Expert Systems with Applications, 12(1), 11-20.
-
(1997)
Expert Systems with Applications
, vol.12
, Issue.1
, pp. 11-20
-
-
Maloof, M.1
Michalski, R.2
-
25
-
-
0003046840
-
A theory and methodology of inductive learning
-
Michalski, R., Carbonell, J., & Mitchell, T. (Eds.), San Francisco, CA: Morgan Kaufmann
-
Michalski, R. (1983). A theory and methodology of inductive learning. In Michalski, R., Carbonell, J., & Mitchell, T. (Eds.), Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann.
-
(1983)
Machine Learning: an Artificial Intelligence Approach
, vol.1
-
-
Michalski, R.1
-
26
-
-
0141629996
-
1 hypotheses: The underlying methodology and the description of program AQ-11
-
Department of Computer Science, University of Illinois, Urbana-Champaign
-
1 hypotheses: The underlying methodology and the description of program AQ-11. Technical report UIUCDCS-F-83-905, Department of Computer Science, University of Illinois, Urbana-Champaign.
-
(1983)
Technical Report UIUCDCS-F-83-905
-
-
Michalski, R.1
Larson, J.2
-
28
-
-
0006033840
-
Incremental learning of concept descriptions: A method and experimental results
-
Hayes, J., Michie, D., & Richards, J. (Eds.), Oxford: Clarendon Press
-
Reinke, R. & Michalski, R. (1988). Incremental learning of concept descriptions: A method and experimental results. In Hayes, J., Michie, D., & Richards, J. (Eds.), Machine Intelligence 11. Oxford: Clarendon Press.
-
(1988)
Machine Intelligence
, vol.11
-
-
Reinke, R.1
Michalski, R.2
-
33
-
-
0031164523
-
Tracking context changes through meta-learning
-
Widmer, G. (1997). Tracking context changes through meta-learning. Machine Learning, 27, 259-286.
-
(1997)
Machine Learning
, vol.27
, pp. 259-286
-
-
Widmer, G.1
-
34
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer, G. & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine Learning, 23, 69-101.
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
35
-
-
0343977965
-
Selective induction learning system AQ-15c: The method and user's guide
-
Fairfax, VA: George Mason University
-
Wnek, J., Kaufman, K., Bloedorn, E., & Michalski, R. (1995). Selective induction learning system AQ-15c: The method and user's guide. Reports of the Machine Learning and Inference Laboratory MLI 95-4. Fairfax, VA: George Mason University.
-
(1995)
Reports of the Machine Learning and Inference Laboratory MLI 95-4
-
-
Wnek, J.1
Kaufman, K.2
Bloedorn, E.3
Michalski, R.4
|