메뉴 건너뛰기




Volumn 4, Issue , 2003, Pages 2764-2769

Incremental Rule Learning with Partial Instance Memory for Changing Concepts

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; HEURISTIC METHODS; USER INTERFACES;

EID: 0141592441     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (35)
  • 2
    • 0141741872 scopus 로고    scopus 로고
    • Ph.D. dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA
    • M. Maloof, "Progressive partial memory learning," Ph.D. dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA, 1996.
    • (1996) Progressive Partial Memory Learning
    • Maloof, M.1
  • 3
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Machine Learning, vol. 23, pp. 69-101, 1996.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 4
    • 0034299906 scopus 로고    scopus 로고
    • Selecting examples for partial memory learning
    • M. Maloof and R. Michalski, "Selecting examples for partial memory learning," Machine Learning, vol. 41, pp. 27-52, 2000.
    • (2000) Machine Learning , vol.41 , pp. 27-52
    • Maloof, M.1    Michalski, R.2
  • 7
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for Winnow and Weighted-Majority algorithms: Results on a calendar scheduling domain
    • A. Blum, "Empirical support for Winnow and Weighted-Majority algorithms: Results on a calendar scheduling domain," Machine Learning, vol. 26, pp. 5-23, 1997.
    • (1997) Machine Learning , vol.26 , pp. 5-23
    • Blum, A.1
  • 9
    • 0031164523 scopus 로고    scopus 로고
    • Tracking context changes through meta-learning
    • G. Widmer, "Tracking context changes through meta-learning," Machine Learning, vol. 27, pp. 259-286, 1997.
    • (1997) Machine Learning , vol.27 , pp. 259-286
    • Widmer, G.1
  • 10
    • 84884637057 scopus 로고    scopus 로고
    • Incremental learning with partial instance memory
    • ser. Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag
    • M. Maloof and R. Michalski, "Incremental learning with partial instance memory," in Foundations of intelligent systems, ser. Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag, 2002, vol. 2366, pp. 16-27.
    • (2002) Foundations of Intelligent Systems , vol.2366 , pp. 16-27
    • Maloof, M.1    Michalski, R.2
  • 11
    • 0029481521 scopus 로고
    • A method for partial-memory incremental learning and its application to computer intrusion detection
    • Los Alamitos, CA: IEEE Press
    • _, "A method for partial-memory incremental learning and its application to computer intrusion detection," in Proceedings of the Seventh IEEE International Conference on Tools with Artificial Intelligence. Los Alamitos, CA: IEEE Press, 1995, pp. 392-397.
    • (1995) Proceedings of the Seventh IEEE International Conference on Tools with Artificial Intelligence , pp. 392-397
  • 12
    • 0033075882 scopus 로고    scopus 로고
    • Separate-and-conquer rule learning
    • J. Fürnkranz, "Separate-and-conquer rule learning," Artificial Intelligence Review, vol. 13, no. 1, pp. 3-54, 1999.
    • (1999) Artificial Intelligence Review , vol.13 , Issue.1 , pp. 3-54
    • Fürnkranz, J.1
  • 18
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • P. Clark and T. Niblett, "The CN2 induction algorithm," Machine Learning, vol. 3, pp. 261-284, 1989.
    • (1989) Machine Learning , vol.3 , pp. 261-284
    • Clark, P.1    Niblett, T.2
  • 23
    • 0141629996 scopus 로고
    • 1 hypotheses: The underlying methodology and the description of program AQ11
    • Department of Computer Science, University of Illinois, Urbana
    • 1 hypotheses: The underlying methodology and the description of program AQ11," Department of Computer Science, University of Illinois, Urbana, Technical Report UIUCDCS-F-83-905, 1983.
    • (1983) Technical Report , vol.UIUCDCS-F-83-905
    • Michalski, R.1    Larson, J.2
  • 25
    • 0002337827 scopus 로고    scopus 로고
    • Machine learning and data mining
    • Nov.
    • T. Mitchell, "Machine learning and data mining," Communications of the ACM, vol. 42, no. 11, pp. 30-36, Nov. 1999.
    • (1999) Communications of the ACM , vol.42 , Issue.11 , pp. 30-36
    • Mitchell, T.1
  • 27
    • 0006033840 scopus 로고
    • Incremental learning of concept descriptions: A method and experimental results
    • J. Hayes, D. Michie, and J. Richards, Eds. Oxford: Clarendon Press
    • R. Reinke and R. Michalski, "Incremental learning of concept descriptions: A method and experimental results," in Machine Intelligence 11, J. Hayes, D. Michie, and J. Richards, Eds. Oxford: Clarendon Press, 1988, pp. 263-288.
    • (1988) Machine Intelligence , vol.11 , pp. 263-288
    • Reinke, R.1    Michalski, R.2
  • 29
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • P. Utgoff, N. Berkman, and J. Clouse, "Decision tree induction based on efficient tree restructuring," Machine Learning, vol. 29, pp. 5-44, 1997.
    • (1997) Machine Learning , vol.29 , pp. 5-44
    • Utgoff, P.1    Berkman, N.2    Clouse, J.3
  • 32
    • 23044532783 scopus 로고    scopus 로고
    • Classification of customer call data in the presence of concept drift and noise
    • ser. Lecture Notes in Computer Science
    • M. Black and R. Hickey, "Classification of customer call data in the presence of concept drift and noise," in Soft-Ware 2002: Computing in an Imperfect World, ser. Lecture Notes in Computer Science, 2002, vol. 2311, pp. 74-87.
    • (2002) Soft-Ware 2002: Computing in an Imperfect World , vol.2311 , pp. 74-87
    • Black, M.1    Hickey, R.2
  • 33
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D. Aha, D. Kibler, and M. Albert, "Instance-based learning algorithms," Machine Learning, vol. 6, pp. 37-66, 1991.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.