메뉴 건너뛰기




Volumn 31, Issue 3, 2003, Pages 705-741

Slice sampling

Author keywords

Adaptive methods; Auxiliary variables; Dynamical methods; Gibbs sampling; Markov chain Monte Carlo; Metropolis algorithm; Overrelaxation

Indexed keywords


EID: 1642370803     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1056562461     Document Type: Review
Times cited : (1870)

References (32)
  • 1
    • 0000361667 scopus 로고
    • Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions
    • ADLER, S. L. (1981). Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions. Phys. Rev. D 23 2901-2904.
    • (1981) Phys. Rev. D , vol.23 , pp. 2901-2904
    • Adler, S.L.1
  • 2
    • 84974115710 scopus 로고
    • Improving stochastic relaxation for Gaussian random fields
    • BARONE, P. and FRIGESSI, A. (1990). Improving stochastic relaxation for Gaussian random fields. Probab. Engrg. Inform. Sci. 4 369-389.
    • (1990) Probab. Engrg. Inform. Sci. , vol.4 , pp. 369-389
    • Barone, P.1    Frigessi, A.2
  • 3
    • 0000103562 scopus 로고
    • Spatial statistics and Bayesian computation
    • BESAG, J. and GREEN, P. J. (1993). Spatial statistics and Bayesian computation (with discussion). J. Roy. Statist. Soc. Ser. B 55 25-37, 53-102.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 25-37
    • Besag, J.1    Green, P.J.2
  • 4
    • 0032221061 scopus 로고    scopus 로고
    • Toward black-box sampling: A random-direction interior-point Markov chain approach
    • CHEN, M.-H. and SCHMEISER, B. W. (1998). Toward black-box sampling: A random-direction interior-point Markov chain approach. J. Comput. Graph. Statist. 7 1-22.
    • (1998) J. Comput. Graph. Statist. , vol.7 , pp. 1-22
    • Chen, M.-H.1    Schmeiser, B.W.2
  • 5
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • DAMIEN, P., WAKEFIELD, J. C. and WALKER, S. G. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 331-344.
    • (1999) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.61 , pp. 331-344
    • Damien, P.1    Wakefield, J.C.2    Walker, S.G.3
  • 6
    • 0034346693 scopus 로고    scopus 로고
    • Analysis of a non-reversible Markov chain sampler
    • DIACONIS, P., HOLMES, S. and NEAL, R. M. (2000). Analysis of a non-reversible Markov chain sampler. Ann. Appl. Probab. 10 726-752.
    • (2000) Ann. Appl. Probab. , vol.10 , pp. 726-752
    • Diaconis, P.1    Holmes, S.2    Neal, R.M.3
  • 7
    • 2442467871 scopus 로고    scopus 로고
    • The nonnegative Boltzmann machine
    • (S. A. Solla, T. K. Leen and K.-R. Muller, eds.). MIT Press, Cambridge, MA
    • DOWNS, O. B., MACKAY, D. J. C. and LEE, D. D. (2000). The nonnegative Boltzmann machine. In Advances in Neural Information Processing Systems (S. A. Solla, T. K. Leen and K.-R. Muller, eds.) 428-434. MIT Press, Cambridge, MA.
    • (2000) Advances in Neural Information Processing Systems , pp. 428-434
    • Downs, O.B.1    Mackay, D.J.C.2    Lee, D.D.3
  • 9
    • 0001440863 scopus 로고
    • Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm
    • EDWARDS, R. G. and SOKAL, A. D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D 38 2009-2012.
    • (1988) Phys. Rev. D , vol.38 , pp. 2009-2012
    • Edwards, R.G.1    Sokal, A.D.2
  • 10
    • 84898944413 scopus 로고    scopus 로고
    • Continuous sigmoidal belief networks trained using slice sampling
    • (M. C. Mozer, M. I. Jordan and T. Petsche, eds.). MIT Press, Cambridge, MA
    • FREY, B. J. (1997). Continuous sigmoidal belief networks trained using slice sampling. In Advances in Neural Information Processing Systems (M. C. Mozer, M. I. Jordan and T. Petsche, eds.). MIT Press, Cambridge, MA.
    • (1997) Advances in Neural Information Processing Systems
    • Frey, B.J.1
  • 11
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 12
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • GEYER, C. J. and THOMPSON, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 13
    • 0001422224 scopus 로고
    • Derivative-free adaptive rejection sampling for Gibbs sampling
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford Univ. Press
    • GILKS, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. In Bayesian Statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 641-649. Oxford Univ. Press.
    • (1992) Bayesian Statistics , pp. 641-649
    • Gilks, W.R.1
  • 14
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • GILKS, W. R., BEST, N. G. and TAN, K. K. C. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 44 455-472.
    • (1995) Appl. Statist. , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 15
    • 13144252695 scopus 로고    scopus 로고
    • Corrigendum: Adaptive rejection Metropolis sampling
    • GILKS, W. R., NEAL, R. M., BEST, N. G. and TAN, K. K. C. (1997). Corrigendum: Adaptive rejection Metropolis sampling. Appl. Statist. 46 541-542.
    • (1997) Appl. Statist. , vol.46 , pp. 541-542
    • Gilks, W.R.1    Neal, R.M.2    Best, N.G.3    Tan, K.K.C.4
  • 16
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • GILKS, W. R. and WILD, P. (1992). Adaptive rejection sampling for Gibbs sampling. Appl. Statist. 41 337-348.
    • (1992) Appl. Statist. , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 17
    • 0001135568 scopus 로고
    • Metropolis methods, Gaussian proposals and antithetic variables
    • (P. Barone et al., eds.). Lecture Notes in Statist. Springer, New York
    • GREEN, P. J. and HAN, X. (1992). Metropolis methods, Gaussian proposals and antithetic variables. Stochastic Models, Statistical Methods, and Algorithms in Image Analysis (P. Barone et al., eds.). Lecture Notes in Statist. 74 142-164. Springer, New York.
    • (1992) Stochastic Models, Statistical Methods, and Algorithms in Image Analysis , vol.74 , pp. 142-164
    • Green, P.J.1    Han, X.2
  • 18
    • 0042908796 scopus 로고    scopus 로고
    • Delayed rejection in reversible jump Metropolis-Hastings
    • GREEN, P. J. and MIRA, A. (2001). Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88 1035-1053.
    • (2001) Biometrika , vol.88 , pp. 1035-1053
    • Green, P.J.1    Mira, A.2
  • 19
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • HASTINGS, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 21
    • 0009349032 scopus 로고
    • A generalized guided Monte Carlo algorithm
    • HOROWITZ, A. M. (1991). A generalized guided Monte Carlo algorithm. Phys. Lett. B 268 247-252.
    • (1991) Phys. Lett. B , vol.268 , pp. 247-252
    • Horowitz, A.M.1
  • 22
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility
    • LUNN, D. J., THOMAS, A., BEST, N. and SPIEGELHALTER, D. (2000). WinBUGS - a Bayesian modelling framework: Concepts, structure, and extensibility. Statist. Comput. 10 325-337.
    • (2000) Statist. Comput. , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 25
    • 0036005408 scopus 로고    scopus 로고
    • Efficiency and convergence properties of slice samplers
    • MIRA, A. and TIERNEY, L. (2002). Efficiency and convergence properties of slice samplers. Scand. J. Statist. 29 1-12.
    • (2002) Scand. J. Statist. , vol.29 , pp. 1-12
    • Mira, A.1    Tierney, L.2
  • 26
    • 0000088731 scopus 로고
    • An improved acceptance procedure for the hybrid Monte Carlo algorithm
    • NEAL, R. M. (1994). An improved acceptance procedure for the hybrid Monte Carlo algorithm. J. Comput. Phys. 111 194-203.
    • (1994) J. Comput. Phys. , vol.111 , pp. 194-203
    • Neal, R.M.1
  • 28
    • 0001692404 scopus 로고    scopus 로고
    • Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation
    • (M. I. Jordan, ed.). Kluwer, Dordrecht
    • NEAL, R. M. (1998). Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. In Learning in Graphical Models (M. I. Jordan, ed.) 205-228. Kluwer, Dordrecht.
    • (1998) Learning in Graphical Models , pp. 205-228
    • Neal, R.M.1
  • 29
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • NEAL, R. M. (2001). Annealed importance sampling. Statist. Comput. 11 125-139.
    • (2001) Statist. Comput. , vol.11 , pp. 125-139
    • Neal, R.M.1
  • 31
    • 0001279441 scopus 로고
    • BUGS: A program to perform Bayesian inference using Gibbs sampling
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford Univ. Press
    • THOMAS, A., SPIEGELHALTER, D. J. and GILKS, W. R. (1992). BUGS: A program to perform Bayesian inference using Gibbs sampling. In Bayesian Statistics (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 837-842. Oxford Univ. Press.
    • (1992) Bayesian Statistics , pp. 837-842
    • Thomas, A.1    Spiegelhalter, D.J.2    Gilks, W.R.3
  • 32
    • 0033619197 scopus 로고    scopus 로고
    • Some adaptive Monte Carlo methods for Bayesian inference
    • TIERNEY, L. and MIRA, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine 18 2507-2515.
    • (1999) Statistics in Medicine , vol.18 , pp. 2507-2515
    • Tierney, L.1    Mira, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.