메뉴 건너뛰기




Volumn 130, Issue 5, 2007, Pages 465-478

A quantitative description of KcsA gating I: Macroscopic currents

Author keywords

[No Author keywords available]

Indexed keywords

POTASSIUM CHANNEL; PROTEIN KCSA; UNCLASSIFIED DRUG; VOLTAGE GATED POTASSIUM CHANNEL;

EID: 35649026900     PISSN: 00221295     EISSN: 00221295     Source Type: Journal    
DOI: 10.1085/jgp.200709843     Document Type: Article
Times cited : (96)

References (59)
  • 1
    • 0038487878 scopus 로고    scopus 로고
    • Voltage-gated K channels
    • Armstrong, C.M. 2003. Voltage-gated K channels. Sci. STKE. 2003:re10.
    • (2003) Sci. STKE , vol.2003
    • Armstrong, C.M.1
  • 2
    • 0034896574 scopus 로고    scopus 로고
    • A model for 4-aminopyridine action on K channels: Similarities to tetraethylammonium ion action
    • Armstrong, C.M., and A. Loboda. 2001. A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action. Biophys. J. 81:895-904.
    • (2001) Biophys. J , vol.81 , pp. 895-904
    • Armstrong, C.M.1    Loboda, A.2
  • 4
    • 0028793256 scopus 로고
    • +]: A tale of two inactivation mechanisms
    • +]: a tale of two inactivation mechanisms. Neuron. 15:951-960.
    • (1995) Neuron , vol.15 , pp. 951-960
    • Baukrowitz, T.1    Yellen, G.2
  • 5
    • 0034017867 scopus 로고    scopus 로고
    • The voltage sensor in voltage-dependent ion channels
    • Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555-592.
    • (2000) Physiol. Rev , vol.80 , pp. 555-592
    • Bezanilla, F.1
  • 7
    • 0026315160 scopus 로고
    • Molecular basis of gating charge immobilization in Shaker potassium channels
    • Bezanilla, F., E. Perozo, D.M. Papazian, and E. Stefani. 1991. Molecular basis of gating charge immobilization in Shaker potassium channels. Science. 254:679-683.
    • (1991) Science , vol.254 , pp. 679-683
    • Bezanilla, F.1    Perozo, E.2    Papazian, D.M.3    Stefani, E.4
  • 8
    • 0028213205 scopus 로고
    • + channels. II. The components of gating currents and a model of channel activation
    • + channels. II. The components of gating currents and a model of channel activation. Biophys. J. 66:1011-1021.
    • (1994) Biophys. J , vol.66 , pp. 1011-1021
    • Bezanilla, F.1    Perozo, E.2    Stefani, E.3
  • 9
    • 35649011561 scopus 로고    scopus 로고
    • A quantitative description of KcsA gating II: Single-channel currents
    • Chakrapani, S., J.F. Cordero-Morales, and E. Perozo. 2007. A quantitative description of KcsA gating II: single-channel currents. J. Gen. Physiol. 130:479-496.
    • (2007) J. Gen. Physiol , vol.130 , pp. 479-496
    • Chakrapani, S.1    Cordero-Morales, J.F.2    Perozo, E.3
  • 10
    • 33645504750 scopus 로고    scopus 로고
    • NMR study of the tetrameric KcsA potassium channel in detergent micelles
    • Chill, J.H., J.M. Louis, C. Miller, and A. Bax. 2006. NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci. 15:684-698.
    • (2006) Protein Sci , vol.15 , pp. 684-698
    • Chill, J.H.1    Louis, J.M.2    Miller, C.3    Bax, A.4
  • 14
    • 0030745896 scopus 로고    scopus 로고
    • + channel (SKC1): Oligomeric stoichiometry and stability
    • + channel (SKC1): oligomeric stoichiometry and stability. Biochemistry. 36:10343-10352.
    • (1997) Biochemistry , vol.36 , pp. 10343-10352
    • Cortes, D.M.1    Perozo, E.2
  • 15
    • 0035013633 scopus 로고    scopus 로고
    • Molecular architecture of full-length KcsA: Role of cytoplasmic domains in ion permeation and activation gating
    • Cortes, D.M., L.G. Cuello, and E. Perozo. 2001. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117:165-180.
    • (2001) J. Gen. Physiol , vol.117 , pp. 165-180
    • Cortes, D.M.1    Cuello, L.G.2    Perozo, E.3
  • 18
    • 0024438904 scopus 로고
    • Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels
    • Delcour, A.H., B. Martinac, J. Adler, and C. Kung. 1989. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56:631-636.
    • (1989) Biophys. J , vol.56 , pp. 631-636
    • Delcour, A.H.1    Martinac, B.2    Adler, J.3    Kung, C.4
  • 19
    • 0026045545 scopus 로고
    • + channel behaves like an open-channel blocker
    • + channel behaves like an open-channel blocker. Neuron. 7:743-753.
    • (1991) Neuron , vol.7 , pp. 743-753
    • Demo, S.D.1    Yellen, G.2
  • 20
    • 0026519665 scopus 로고
    • + channel correlate with occupancy of the pore
    • + channel correlate with occupancy of the pore. Biophys. J. 61:639-648.
    • (1992) Biophys. J , vol.61 , pp. 639-648
    • Demo, S.D.1    Yellen, G.2
  • 22
    • 29144472228 scopus 로고    scopus 로고
    • Activation-coupled inactivation in the bacterial potassium channel KcsA
    • Gao, L., X. Mi, V. Paajanen, K. Wang, and Z. Fan. 2005. Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc. Natl. Acad. Sci. USA. 102:17630-17635.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 17630-17635
    • Gao, L.1    Mi, X.2    Paajanen, V.3    Wang, K.4    Fan, Z.5
  • 23
    • 0023101235 scopus 로고
    • Gating of Na channels. Inactivation modifiers discriminate among models
    • Gonoi, T., and B. Hille. 1987. Gating of Na channels. Inactivation modifiers discriminate among models. J. Gen. Physiol. 89:253-274.
    • (1987) J. Gen. Physiol , vol.89 , pp. 253-274
    • Gonoi, T.1    Hille, B.2
  • 24
    • 0033543132 scopus 로고    scopus 로고
    • Structure of the KcsA potassium channel from Streptomyces lividans: A site directed spin labeling study of the second transmembrane segment
    • Gross, A., L. Columbus, K. Hideg, C. Altenbach, and W.L. Hubbell. 1999. Structure of the KcsA potassium channel from Streptomyces lividans: a site directed spin labeling study of the second transmembrane segment. Biochemistry. 38:10324-10335.
    • (1999) Biochemistry , vol.38 , pp. 10324-10335
    • Gross, A.1    Columbus, L.2    Hideg, K.3    Altenbach, C.4    Hubbell, W.L.5
  • 27
    • 0028014591 scopus 로고
    • Shaker potassium channel gating. I: Transitions near the open state
    • Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1994. Shaker potassium channel gating. I: Transitions near the open state. J. Gen. Physiol. 103:249-278.
    • (1994) J. Gen. Physiol , vol.103 , pp. 249-278
    • Hoshi, T.1    Zagotta, W.N.2    Aldrich, R.W.3
  • 29
    • 0037198626 scopus 로고    scopus 로고
    • Crystal structure and mechanism of a calcium-gated potassium channel
    • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 417:515-522.
    • (2002) Nature , vol.417 , pp. 515-522
    • Jiang, Y.1    Lee, A.2    Chen, J.3    Cadene, M.4    Chait, B.T.5    MacKinnon, R.6
  • 31
    • 0037387189 scopus 로고    scopus 로고
    • Potassium channel gating observed with site-directed mass tagging
    • Kelly, B.L., and A. Gross. 2003. Potassium channel gating observed with site-directed mass tagging. Nat. Struct. Biol. 10:280-284.
    • (2003) Nat. Struct. Biol , vol.10 , pp. 280-284
    • Kelly, B.L.1    Gross, A.2
  • 32
    • 0031897384 scopus 로고    scopus 로고
    • + at the potassium channel selectivity filter
    • + at the potassium channel selectivity filter. Biophys. J. 74:1840-1849.
    • (1998) Biophys. J , vol.74 , pp. 1840-1849
    • Kiss, L.1    Korn, S.J.2
  • 33
    • 0032907373 scopus 로고    scopus 로고
    • Contribution of the selectivity filter to inactivation in potassium channels
    • Kiss, L., J. LoTurco, and S.J. Korn. 1999. Contribution of the selectivity filter to inactivation in potassium channels. Biophys. J. 76:253-263.
    • (1999) Biophys. J , vol.76 , pp. 253-263
    • Kiss, L.1    LoTurco, J.2    Korn, S.J.3
  • 35
    • 33645858263 scopus 로고    scopus 로고
    • Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR
    • Lange, A., K. Giller, S. Hornig, M.F. Martin-Eauclaire, O. Pongs, S. Becker, and M. Baldus. 2006. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature. 440:959-962.
    • (2006) Nature , vol.440 , pp. 959-962
    • Lange, A.1    Giller, K.2    Hornig, S.3    Martin-Eauclaire, M.F.4    Pongs, O.5    Becker, S.6    Baldus, M.7
  • 37
    • 0030071057 scopus 로고    scopus 로고
    • Recovery from C-type inactivation is modulated by extracellular potassium
    • Levy, D.I., and C. Deutsch. 1996. Recovery from C-type inactivation is modulated by extracellular potassium. Biophys. J. 70:798-805.
    • (1996) Biophys. J , vol.70 , pp. 798-805
    • Levy, D.I.1    Deutsch, C.2
  • 39
    • 0034817286 scopus 로고    scopus 로고
    • Structure of the KcsA channel intracellular gate in the open state
    • Liu, Y., S.P. Sompornpisut, and E. Perozo. 2001. Structure of the KcsA channel intracellular gate in the open state. Nat. Struct. Biol. 8:883-887.
    • (2001) Nat. Struct. Biol , vol.8 , pp. 883-887
    • Liu, Y.1    Sompornpisut, S.P.2    Perozo, E.3
  • 41
    • 0027828292 scopus 로고
    • Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels
    • Lopez-Barneo, J.T. Hoshi, S.H. Heinemann, and R.W. Aldrich. 1993. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1:61-71.
    • (1993) Receptors Channels , vol.1 , pp. 61-71
    • Lopez-Barneo1    Hoshi, J.T.2    Heinemann, S.H.3    Aldrich, R.W.4
  • 44
    • 33750530195 scopus 로고    scopus 로고
    • Cross talk between activation and slow inactivation gates of Shaker potassium channels
    • Panyi, G., and C. Deutsch. 2006. Cross talk between activation and slow inactivation gates of Shaker potassium channels. J. Gen. Physiol. 128:547-559.
    • (2006) J. Gen. Physiol , vol.128 , pp. 547-559
    • Panyi, G.1    Deutsch, C.2
  • 48
    • 0031952461 scopus 로고    scopus 로고
    • Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels
    • Schoppa, N.E., and F.J. Sigworth. 1998. Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J. Gen. Physiol. 111:313-342.
    • (1998) J. Gen. Physiol , vol.111 , pp. 313-342
    • Schoppa, N.E.1    Sigworth, F.J.2
  • 49
    • 0028841033 scopus 로고
    • A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans
    • Schrempf, H., O. Schmidt, R. Kummerlen, S. Hinnah, D. Muller, M. Betzler, T. Steinkamp, and R. Wagner. 1995. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14:5170-5178.
    • (1995) EMBO J , vol.14 , pp. 5170-5178
    • Schrempf, H.1    Schmidt, O.2    Kummerlen, R.3    Hinnah, S.4    Muller, D.5    Betzler, M.6    Steinkamp, T.7    Wagner, R.8
  • 50
    • 0026356520 scopus 로고
    • Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes
    • Shapiro, M.S., and T.E. DeCoursey. 1991. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes. J. Gen. Physiol. 97:1251-1278.
    • (1991) J. Gen. Physiol , vol.97 , pp. 1251-1278
    • Shapiro, M.S.1    DeCoursey, T.E.2
  • 51
    • 0027971204 scopus 로고
    • Voltage gating of ion channels
    • Sigworth, F.J. 1994. Voltage gating of ion channels. Q. Rev. Biophys. 27:1-40.
    • (1994) Q. Rev. Biophys , vol.27 , pp. 1-40
    • Sigworth, F.J.1
  • 52
    • 0024535492 scopus 로고
    • Rubidium ions and the gating of delayed rectifier potassium channels of frog skeletal muscle
    • Spruce, A.E., N.B. Standen, and P.R. Stanfield. 1989. Rubidium ions and the gating of delayed rectifier potassium channels of frog skeletal muscle. J. Physiol. 411:597-610.
    • (1989) J. Physiol , vol.411 , pp. 597-610
    • Spruce, A.E.1    Standen, N.B.2    Stanfield, P.R.3
  • 53
    • 0021965721 scopus 로고
    • Sodium channel activation in the squid giant axon. Steady state properties
    • Stimers, J.R., F. Bezanilla, and R.E. Taylor. 1985. Sodium channel activation in the squid giant axon. Steady state properties. J. Gen. Physiol. 85:65-82.
    • (1985) J. Gen. Physiol , vol.85 , pp. 65-82
    • Stimers, J.R.1    Bezanilla, F.2    Taylor, R.E.3
  • 55
    • 34447500703 scopus 로고    scopus 로고
    • Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA
    • Takeuchi, K., H. Takahashi, S. Kawano, and I. Shimada. 2007. Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J. Biol. Chem. 282:15179-15186.
    • (2007) J. Biol. Chem , vol.282 , pp. 15179-15186
    • Takeuchi, K.1    Takahashi, H.2    Kawano, S.3    Shimada, I.4
  • 56
    • 0032548788 scopus 로고    scopus 로고
    • + channel (SKC1): Secondary structure characterization from FTIR spectroscopy
    • + channel (SKC1): secondary structure characterization from FTIR spectroscopy. FEBS Lett. 423:205-212.
    • (1998) FEBS Lett , vol.423 , pp. 205-212
    • Tatulian, S.A.1    Cortes, D.M.2    Perozo, E.3
  • 57
    • 0025137174 scopus 로고
    • Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle
    • Zagotta, W.N., and R.W. Aldrich. 1990. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J. Gen. Physiol. 95:29-60.
    • (1990) J. Gen. Physiol , vol.95 , pp. 29-60
    • Zagotta, W.N.1    Aldrich, R.W.2
  • 58
    • 0028140472 scopus 로고
    • Shaker potassium channel gating. III: Evaluation of kinetic models for activation
    • Zagotta, W.N., T. Hoshi, and R.W. Aldrich. 1994. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103:321-362.
    • (1994) J. Gen. Physiol , vol.103 , pp. 321-362
    • Zagotta, W.N.1    Hoshi, T.2    Aldrich, R.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.