-
13
-
-
33744468970
-
-
O. Grubisha L. A. Rafty C. L. Takanishi X. Xu L. Tong L. A. L. Perraud A. M. Scharenberg J. M. Denu J. Biol. Chem. 2006 281 14057
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 14057
-
-
Grubisha, O.1
Rafty, L.A.2
Takanishi, C.L.3
Xu, X.4
Tong, L.5
Perraud, L.A.L.6
Scharenberg, A.M.7
Denu, J.M.8
-
15
-
-
9744224380
-
-
A. S. Mildvan Z. Xia H. F. Azurmendi V. Saraswat P. M. Legler M. A. Massiah S. B. Gabelli M. A. Bianchet L. W. Kang L. M. Amzel Arch. Biochem. Biophys. 2005 433 129
-
(2005)
Arch. Biochem. Biophys.
, vol.433
, pp. 129
-
-
Mildvan, A.S.1
Xia, Z.2
Azurmendi, H.F.3
Saraswat, V.4
Legler, P.M.5
Massiah, M.A.6
Gabelli, S.B.7
Bianchet, M.A.8
Kang, L.W.9
Amzel, L.M.10
-
29
-
-
0033591120
-
-
M. P. Watterson L. Pickering M. D. Smith S. J. Hudson P. R. Marsh J. E. Mordaunt D. J. Watkin C. J. Newman G. W. Fleet Tetrahedron: Asymmetry 1999 10 1855
-
(1999)
Tetrahedron: Asymmetry
, vol.10
, pp. 1855
-
-
Watterson, M.P.1
Pickering, L.2
Smith, M.D.3
Hudson, S.J.4
Marsh, P.R.5
Mordaunt, J.E.6
Watkin, D.J.7
Newman, C.J.8
Fleet, G.W.9
-
36
-
-
0018434816
-
-
A. V. Azhayev A. M. Ozols A. S. Bushnev N. B. Dyatkina S. V. Kochetova L. S. Victorova M. K. Kikhanova A. A. Krayevsky B. P. Gottokh Nucleic Acids Res. 1979 6 625
-
(1979)
Nucleic Acids Res.
, vol.6
, pp. 625
-
-
Azhayev, A.V.1
Ozols, A.M.2
Bushnev, A.S.3
Dyatkina, N.B.4
Kochetova, S.V.5
Victorova, L.S.6
Kikhanova, M.K.7
Krayevsky, A.A.8
Gottokh, B.P.9
-
39
-
-
0040868020
-
-
Note: additional methodologies to activate AMP have been described to perform such couplings. See ref. 17 and
-
Q. F. Ma M. A. Reynolds G. L. Kenyon Bioorg. Chem. 1989 17 194. Note: additional methodologies to activate AMP have been described to perform such couplings. See ref. 17 and
-
(1989)
Bioorg. Chem.
, vol.17
, pp. 194
-
-
Ma, Q.F.1
Reynolds, M.A.2
Kenyon, G.L.3
-
44
-
-
21244444665
-
-
G. I. Karras G. Kustatscher H. R. Buhecha M. D. Allen C. Pugieux F. Sait M. Bycroft A. G. Ladurner EMBO J. 2005 24 1911
-
(2005)
EMBO J.
, vol.24
, pp. 1911
-
-
Karras, G.I.1
Kustatscher, G.2
Buhecha, H.R.3
Allen, M.D.4
Pugieux, C.5
Sait, F.6
Bycroft, M.7
Ladurner, A.G.8
-
45
-
-
34548739750
-
-
The structure of macroH2A1.1 was not co-crystallized with OAADPr. Thus, the crystal structure of ADPr bound to the Af1521 macro domain (PDB accession code 2BFQ) was overlayed with macroH2A1.1 (carbon backbone was matched based upon homology) and the resulting structure of ADPr was utilized as a starting point for modeling the N-acetyl analogs into macroH2A1.1. The structure of ADPr was modified in SYBYL, torsionally constrained about the new bonds, and energies minimized across the new structure. PyMol was utilized to produce the images in Fig. 4 Previous studies of the Af1521 macro domain bound to ADPr indicated that mutation of Asn 34 to Ala reduced binding affinity three-fold. See ref. 32
-
The structure of macroH2A1.1 was not co-crystallized with OAADPr. Thus, the crystal structure of ADPr bound to the Af1521 macro domain (PDB accession code 2BFQ) was overlayed with macroH2A1.1 (carbon backbone was matched based upon homology) and the resulting structure of ADPr was utilized as a starting point for modeling the N-acetyl analogs into macroH2A1.1. The structure of ADPr was modified in SYBYL, torsionally constrained about the new bonds, and energies minimized across the new structure. PyMol was utilized to produce the images in Fig. 4.
-
-
-
-
46
-
-
34548741447
-
-
Previous studies of the Af1521 macro domain bound to ADPr indicated that mutation of Asn 34 to Ala reduced binding affinity three-fold. See ref. 32.
-
Previous studies of the Af1521 macro domain bound to ADPr indicated that mutation of Asn 34 to Ala reduced binding affinity three-fold. See ref. 32.
-
-
-
|