메뉴 건너뛰기




Volumn 28, Issue 1, 2006, Pages 24-32

Epistemological issues in omics and high-dimensional biology: Give the people what they want

Author keywords

Microarray experiments; Proteomics; Statistical genonics

Indexed keywords

CONFERENCE PAPER; EPISTEMOLOGY; GENE EXPRESSION; GENE REPLICATION; GENE SEQUENCE; GENETIC POLYMORPHISM; GENOMICS; HUMAN; MATHEMATICAL ANALYSIS; MICROARRAY ANALYSIS; PRIORITY JOURNAL; ARTICLE; BIOLOGY; DNA MICROARRAY; METHODOLOGY; REPRODUCIBILITY; STATISTICS;

EID: 34247884263     PISSN: 10948341     EISSN: 15312267     Source Type: Journal    
DOI: 10.1152/physiolgenomics.00095.2006     Document Type: Conference Paper
Times cited : (22)

References (90)
  • 2
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long A. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509-519, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.2
  • 3
    • 18744389489 scopus 로고    scopus 로고
    • Significance analysis of functional categories in gene expression studies: A structured permutation approach
    • Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21: 1943-1949, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1943-1949
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289-300, 1995.
    • (1995) J R Stat Soc B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 0043005476 scopus 로고    scopus 로고
    • Bioequivalence trials, intersection-union tests, and equivalence confidence sets
    • Berger RL, Hsu JC. Bioequivalence trials, intersection-union tests, and equivalence confidence sets. Stat Sci 11: 283-319, 1996.
    • (1996) Stat Sci , vol.11 , pp. 283-319
    • Berger, R.L.1    Hsu, J.C.2
  • 7
    • 25444452877 scopus 로고    scopus 로고
    • A comparative review of estimates of the proportion unchanged genes and the false discovery rate
    • Broberg P. A comparative review of estimates of the proportion unchanged genes and the false discovery rate. BMC Bioinformatics 6: 199, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 199
    • Broberg, P.1
  • 8
    • 0040673160 scopus 로고
    • A general plasmode (No. 30-10-5-2) for factor analytic exercises and research
    • Cattell RB, Jaspars J. A general plasmode (No. 30-10-5-2) for factor analytic exercises and research. Multivariate Behav Res Monographs 67: 1-212, 1967.
    • (1967) Multivariate Behav Res Monographs , vol.67 , pp. 1-212
    • Cattell, R.B.1    Jaspars, J.2
  • 9
    • 22144461265 scopus 로고    scopus 로고
    • Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset
    • Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol 6: R16, 2005.
    • (2005) Genome Biol , vol.6
    • Choe, S.E.1    Boutros, M.2    Michelson, A.M.3    Church, G.M.4    Halfon, M.S.5
  • 10
    • 34247877938 scopus 로고    scopus 로고
    • Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS. Response to 'A reanalysis of a published Affymetrix GeneChip control dataset' by Dabney and Storey in Genome Biology 7: 401, 2006. Genome Biol 7: 401.3- 401.6, 2006.
    • Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS. Response to 'A reanalysis of a published Affymetrix GeneChip control dataset' by Dabney and Storey in Genome Biology 7: 401, 2006. Genome Biol 7: 401.3- 401.6, 2006.
  • 11
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat Genet 32: 490-495, 2002.
    • (2002) Nat Genet , vol.32 , pp. 490-495
    • Churchill, G.A.1
  • 13
    • 34247851129 scopus 로고    scopus 로고
    • Gene variant may boost obesity risk
    • 13 April
    • Couzin J. Gene variant may boost obesity risk. ScienceNOW Daily News, 13 April 2006.
    • (2006) ScienceNOW Daily News
    • Couzin, J.1
  • 14
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for differential expression in cDNA microarray experiments
    • Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4: 210, 2003.
    • (2003) Genome Biol , vol.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 15
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance component estimates
    • Cui XQ, Hwang TG, Qui J, Blades J, Churchill GA. Improved statistical tests for differential gene expression by shrinking variance component estimates. Biostatistics 6: 59-75, 2005.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.Q.1    Hwang, T.G.2    Qui, J.3    Blades, J.4    Churchill, G.A.5
  • 16
    • 33745023798 scopus 로고    scopus 로고
    • A reanalysis of a published Affymetrix Gene-Chip control dataset
    • Dabney AR, Storey JD. A reanalysis of a published Affymetrix Gene-Chip control dataset. Genome Biol 7: 401, 2006.
    • (2006) Genome Biol , vol.7 , pp. 401
    • Dabney, A.R.1    Storey, J.D.2
  • 17
    • 0035850987 scopus 로고    scopus 로고
    • Gene expression microarrays: A 21st century tool for directed vaccine design
    • Dhiman N, Bonilla R, O'Kane DJ, Poland GA. Gene expression microarrays: a 21st century tool for directed vaccine design. Vaccine 20: 22-30, 2001.
    • (2001) Vaccine , vol.20 , pp. 22-30
    • Dhiman, N.1    Bonilla, R.2    O'Kane, D.J.3    Poland, G.A.4
  • 18
    • 0141506137 scopus 로고    scopus 로고
    • Questions and answers on design of dual-label microarrays for identifying differentially expressed genes
    • Dobbin K, Shih JH, Simon R. Questions and answers on design of dual-label microarrays for identifying differentially expressed genes. J Natl Cancer Inst 95: 1362-1369, 2003.
    • (2003) J Natl Cancer Inst , vol.95 , pp. 1362-1369
    • Dobbin, K.1    Shih, J.H.2    Simon, R.3
  • 19
    • 14044252027 scopus 로고    scopus 로고
    • Dudoit S, van der Laan MJ, Pollard KS. Multiple testing. Part I. Single-step procedures for control of general type I error rates. Stat Appl Genet Mol Biol 3: 13, 2004.
    • Dudoit S, van der Laan MJ, Pollard KS. Multiple testing. Part I. Single-step procedures for control of general type I error rates. Stat Appl Genet Mol Biol 3: 13, 2004.
  • 22
    • 3543054548 scopus 로고    scopus 로고
    • Evaluation and optimization of clustering in gene expression data analysis
    • Famili AF, Liu G, Liu Z. Evaluation and optimization of clustering in gene expression data analysis. Bioinformatics 20: 1535-1545, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 1535-1545
    • Famili, A.F.1    Liu, G.2    Liu, Z.3
  • 23
    • 33645643565 scopus 로고    scopus 로고
    • A two-sample Bayesian t-test for microarray data
    • Fox RJ, Dimmic MD. A two-sample Bayesian t-test for microarray data. BMC Bioinformatics 7: 126, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 126
    • Fox, R.J.1    Dimmic, M.D.2
  • 25
    • 0038041495 scopus 로고    scopus 로고
    • Randomization tests for small samples: An application for genetic expression data
    • Gadbury GL, Page GP, Heo M, Mountz JD, Allison DB. Randomization tests for small samples: an application for genetic expression data. J R Stat Soc C 52: 365-376, 2003.
    • (2003) J R Stat Soc C , vol.52 , pp. 365-376
    • Gadbury, G.L.1    Page, G.P.2    Heo, M.3    Mountz, J.D.4    Allison, D.B.5
  • 26
    • 33644811359 scopus 로고    scopus 로고
    • Glatt CE, Carlson E, Taylor TR, Risch N, Reus VI, Schaefer CA. Response to Zhang et al. (2005): Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. Neuron 48: 704-705, 2005.
    • Glatt CE, Carlson E, Taylor TR, Risch N, Reus VI, Schaefer CA. Response to Zhang et al. (2005): Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. Neuron 48: 704-705, 2005.
  • 29
    • 0025815687 scopus 로고
    • Two guidelines for bootstrap hypothesis testing
    • Hall P, Wilson SR. Two guidelines for bootstrap hypothesis testing. Biometrics 47: 757-762, 1991.
    • (1991) Biometrics , vol.47 , pp. 757-762
    • Hall, P.1    Wilson, S.R.2
  • 31
    • 33645823677 scopus 로고    scopus 로고
    • A new summarization method for Affymetrix probe level data
    • Hochreiter S, Clevert DA, Obermayer K. A new summarization method for Affymetrix probe level data. Bioinformatics 22: 943-949, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 943-949
    • Hochreiter, S.1    Clevert, D.A.2    Obermayer, K.3
  • 32
    • 33645326509 scopus 로고    scopus 로고
    • Comparison of Affymetrix GeneChip expression measures
    • Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression measures. Bioinformatics 22: 789-794, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 789-794
    • Irizarry, R.A.1    Wu, Z.2    Jaffee, H.A.3
  • 33
    • 33644583716 scopus 로고    scopus 로고
    • BAMarray: Java software for Bayesian analysis of variance for microarray data
    • Ishwaran H, Rao JS, Kogalur UB. BAMarray: Java software for Bayesian analysis of variance for microarray data. BMC Bioinformatics 7: 59, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 59
    • Ishwaran, H.1    Rao, J.S.2    Kogalur, U.B.3
  • 34
    • 29144463142 scopus 로고    scopus 로고
    • Removing intensity effects and identifying significant genes for Affymetrix arrays in macrophage migration inhibitory factor-suppressed neuroblastoma cells
    • Jianqing F, Chen Y, Chan HM, Tam Paul KH, Yi R. Removing intensity effects and identifying significant genes for Affymetrix arrays in macrophage migration inhibitory factor-suppressed neuroblastoma cells. Proc Natl Acad Sci USA 102: 17751-17756, 2005.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17751-17756
    • Jianqing, F.1    Chen, Y.2    Chan, H.M.3    Tam Paul, K.H.4    Yi, R.5
  • 35
    • 21644431717 scopus 로고    scopus 로고
    • A Bayesian test for goodness-of-fit
    • Johnson VE. A Bayesian test for goodness-of-fit. Annals Stat 32: 2361-2384, 2004.
    • (2004) Annals Stat , vol.32 , pp. 2361-2384
    • Johnson, V.E.1
  • 36
    • 33747877325 scopus 로고    scopus 로고
    • How accurately can we control the FDR in analyzing microarray data?
    • Jung SH, Jang W. How accurately can we control the FDR in analyzing microarray data? Bioinformatics 22: 1730-1736, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 1730-1736
    • Jung, S.H.1    Jang, W.2
  • 37
    • 33644878286 scopus 로고    scopus 로고
    • WNT2B: Comparative integromics and clinical applications
    • Katoh M. WNT2B: comparative integromics and clinical applications. Int J Mol Med 16: 1103-1108, 2005.
    • (2005) Int J Mol Med , vol.16 , pp. 1103-1108
    • Katoh, M.1
  • 38
    • 0001343445 scopus 로고    scopus 로고
    • Randomization tests for multiple regression
    • Kennedy PE, Cade BS. Randomization tests for multiple regression. Comm Stat Simul Comput 25: 923-936, 1996.
    • (1996) Comm Stat Simul Comput , vol.25 , pp. 923-936
    • Kennedy, P.E.1    Cade, B.S.2
  • 39
    • 0035032570 scopus 로고    scopus 로고
    • Related articles, statistical design and the analysis of gene expression microarray data
    • Kerr MK, Churchill GA. Related articles, statistical design and the analysis of gene expression microarray data. Genet Res 77: 123-128, 2001.
    • (2001) Genet Res , vol.77 , pp. 123-128
    • Kerr, M.K.1    Churchill, G.A.2
  • 40
    • 33646375698 scopus 로고    scopus 로고
    • Treating expression levels of different genes as a sample in microarray data analysis: Is it worth a risk?
    • Klebanov L, Yakovlev A. Treating expression levels of different genes as a sample in microarray data analysis: is it worth a risk? Stat Appl Genet Mol Biol 5: 9, 2006.
    • (2006) Stat Appl Genet Mol Biol , vol.5 , pp. 9
    • Klebanov, L.1    Yakovlev, A.2
  • 41
    • 1342330540 scopus 로고    scopus 로고
    • Non-parametric, hypothesis-based analysis of microarrays for comparison of several phenotypes
    • Kowalski J, Drake C, Schwartz RH, Powell J. Non-parametric, hypothesis-based analysis of microarrays for comparison of several phenotypes. Bioinformatics 20: 364-373, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 364-373
    • Kowalski, J.1    Drake, C.2    Schwartz, R.H.3    Powell, J.4
  • 42
    • 0142123097 scopus 로고    scopus 로고
    • Gene expression profiling in Werner syndrome closely resembles that of normal aging
    • Kyng KJ, May A, Kolvraa S, Bohr VA. Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc Natl Acad Sci USA 100: 12259-12264, 2003.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 12259-12264
    • Kyng, K.J.1    May, A.2    Kolvraa, S.3    Bohr, V.A.4
  • 43
    • 33646188852 scopus 로고    scopus 로고
    • Family-based designs in the age of large-scale gene-association studies
    • Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7: 385-394, 2006.
    • (2006) Nat Rev Genet , vol.7 , pp. 385-394
    • Laird, N.M.1    Lange, C.2
  • 44
    • 0024925728 scopus 로고
    • Testing whether an identified treatment is best
    • Laska EM, Meisner MJ. Testing whether an identified treatment is best. Biometrics 45: 1139-1151, 1989.
    • (1989) Biometrics , vol.45 , pp. 1139-1151
    • Laska, E.M.1    Meisner, M.J.2
  • 45
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • Lee ML, Whitmore GA. Power and sample size for DNA microarray studies. Stat Med 21: 3543-3570, 2002.
    • (2002) Stat Med , vol.21 , pp. 3543-3570
    • Lee, M.L.1    Whitmore, G.A.2
  • 46
    • 0014331116 scopus 로고
    • Statistical significance in psychological research
    • Lykken DT. Statistical significance in psychological research. Psychol Bull 70: 51-159, 1968.
    • (1968) Psychol Bull , vol.70 , pp. 51-159
    • Lykken, D.T.1
  • 47
    • 22944444171 scopus 로고    scopus 로고
    • Testing differential gene expression in functional groups. Goeman's global test versus an ANCOVA approach
    • Mansmann U, Meister R. Testing differential gene expression in functional groups. Goeman's global test versus an ANCOVA approach. Methods Inf Med 44: 449-453, 2005.
    • (2005) Methods Inf Med , vol.44 , pp. 449-453
    • Mansmann, U.1    Meister, R.2
  • 48
    • 34247849537 scopus 로고    scopus 로고
    • McClure J, Wit E. Statistics for Microarrays: Design, Analysis and Inference. New York: Wiley, 2004, p.181.
    • McClure J, Wit E. Statistics for Microarrays: Design, Analysis and Inference. New York: Wiley, 2004, p.181.
  • 49
    • 3242681234 scopus 로고    scopus 로고
    • Statistical issues in the design and analysis of gene expression microarray studies of animal models
    • McShane LM, Shih JH, Michalowska AM. Statistical issues in the design and analysis of gene expression microarray studies of animal models. J Mammary Gland Biol Neoplasia 8: 359-374, 2003.
    • (2003) J Mammary Gland Biol Neoplasia , vol.8 , pp. 359-374
    • McShane, L.M.1    Shih, J.H.2    Michalowska, A.M.3
  • 50
    • 4444371602 scopus 로고    scopus 로고
    • Towards sound epistemological foundation of statistical methods for high-dimensional biology
    • Mehta T, Tanik M, Allison DB. Towards sound epistemological foundation of statistical methods for high-dimensional biology. Nat Genet 36: 943-947, 2004.
    • (2004) Nat Genet , vol.36 , pp. 943-947
    • Mehta, T.1    Tanik, M.2    Allison, D.B.3
  • 51
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5: 155-176, 2004.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 52
    • 0242496185 scopus 로고    scopus 로고
    • A design and statistical perspective on microarray gene expression studies in nutrition: The need for playful creativity and scientific hard-mindedness
    • Page GP, Edwards JW, Barnes S, Weindruch R, Allison DB. A design and statistical perspective on microarray gene expression studies in nutrition: the need for playful creativity and scientific hard-mindedness. Nutrition 19: 997-1000, 2003.
    • (2003) Nutrition , vol.19 , pp. 997-1000
    • Page, G.P.1    Edwards, J.W.2    Barnes, S.3    Weindruch, R.4    Allison, D.B.5
  • 53
    • 27544510142 scopus 로고    scopus 로고
    • Bias in the estimation of false discovery rate in microarray studies
    • Pawitan Y, Murthy KR, Michiels S, Ploner A. Bias in the estimation of false discovery rate in microarray studies. Bioinformatics 21: 3865-3872, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3865-3872
    • Pawitan, Y.1    Murthy, K.R.2    Michiels, S.3    Ploner, A.4
  • 54
    • 34247846450 scopus 로고    scopus 로고
    • What is a gene?
    • Pearson H. What is a gene? Nature 441: 399-401, 2006.
    • (2006) Nature , vol.441 , pp. 399-401
    • Pearson, H.1
  • 55
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • Pepe MS, Longton G, Anderson GL, Schummer M. Selecting differentially expressed genes from microarray experiments. Biometrics 59: 133-142, 2003.
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.S.1    Longton, G.2    Anderson, G.L.3    Schummer, M.4
  • 56
    • 4444294164 scopus 로고    scopus 로고
    • Improving false discovery rate estimation
    • Pounds S, Cheng C. Improving false discovery rate estimation. Bioinformatics 20: 1737-1745, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 1737-1745
    • Pounds, S.1    Cheng, C.2
  • 57
    • 33747840464 scopus 로고    scopus 로고
    • Estimation and control of multiple testing error rates for microarray studies
    • Pounds SB. Estimation and control of multiple testing error rates for microarray studies. Brief Bioinform 7: 25-36, 2006.
    • (2006) Brief Bioinform , vol.7 , pp. 25-36
    • Pounds, S.B.1
  • 58
    • 0009093765 scopus 로고
    • Bayesian interpretation of standard inference statements
    • Pratt JW. Bayesian interpretation of standard inference statements. J R Stat Soc B 27: 169-203, 1965.
    • (1965) J R Stat Soc B , vol.27 , pp. 169-203
    • Pratt, J.W.1
  • 59
    • 10944260135 scopus 로고    scopus 로고
    • Clinical trial design for microarray predictive marker discovery and assessment
    • Pusztai L, Hess KR. Clinical trial design for microarray predictive marker discovery and assessment. Ann Oncol 15: 1731-1737, 2004.
    • (2004) Ann Oncol , vol.15 , pp. 1731-1737
    • Pusztai, L.1    Hess, K.R.2
  • 60
    • 18844414500 scopus 로고    scopus 로고
    • Reassessing design and analysis of two-colour microarray experiments using mixed effects models
    • Rosa GJM, Steibel JP, Tempelman RJ. Reassessing design and analysis of two-colour microarray experiments using mixed effects models. Comp Funct Genomics 6: 123-131, 2005.
    • (2005) Comp Funct Genomics , vol.6 , pp. 123-131
    • Rosa, G.J.M.1    Steibel, J.P.2    Tempelman, R.J.3
  • 61
    • 0000992959 scopus 로고
    • Plots of P-values to evaluate many tests simultaneously
    • Schweder T, Spjotvoll E. Plots of P-values to evaluate many tests simultaneously. Biometrika 69: 493-502, 1982.
    • (1982) Biometrika , vol.69 , pp. 493-502
    • Schweder, T.1    Spjotvoll, E.2
  • 62
    • 33645324706 scopus 로고    scopus 로고
    • An interactive power analysis tool for microarray hypothesis testing and generation
    • Seo J, Gordish-Dressman H, Hoffman EP. An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics 22: 808-814, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 808-814
    • Seo, J.1    Gordish-Dressman, H.2    Hoffman, E.P.3
  • 63
    • 0034730490 scopus 로고    scopus 로고
    • CERN's gamble shows perils, rewards of playing the odds
    • Siefe C. CERN's gamble shows perils, rewards of playing the odds. Science 289: 2260-2262, 2000.
    • (2000) Science , vol.289 , pp. 2260-2262
    • Siefe, C.1
  • 64
  • 67
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • Storey JD. A direct approach to false discovery rates. J R Stat Soc B 64: 479-498, 2002.
    • (2002) J R Stat Soc B , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 68
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Annals Stat 31: 2013-2035, 2003.
    • (2003) Annals Stat , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 70
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116-5121, 2001.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 71
    • 34247853588 scopus 로고    scopus 로고
    • Van Den Bogaert A, De Zutter S, Heyrman L, Mendlewicz J, Adolfsson R, Van Broeckhoven C, Del-Favero J. Response to Zhang et al. (2005): Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. Neuron 48: 705-706, 2005.
    • Van Den Bogaert A, De Zutter S, Heyrman L, Mendlewicz J, Adolfsson R, Van Broeckhoven C, Del-Favero J. Response to Zhang et al. (2005): Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. Neuron 48: 705-706, 2005.
  • 72
    • 14644392927 scopus 로고    scopus 로고
    • van der Laan MJ, Dudoit S, Pollard K. Multiple testing. Part II. Step-down procedures for control of the family-wise error rate. Stat Appl Genet Mol Biol 3: 14, 2004.
    • van der Laan MJ, Dudoit S, Pollard K. Multiple testing. Part II. Step-down procedures for control of the family-wise error rate. Stat Appl Genet Mol Biol 3: 14, 2004.
  • 73
    • 14644413619 scopus 로고    scopus 로고
    • Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives
    • van der Laan MJ, Dudoit S, Pollard KS. Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat Appl Genet Mol Biol 3: 15, 2004.
    • (2004) Stat Appl Genet Mol Biol , vol.3 , pp. 15
    • van der Laan, M.J.1    Dudoit, S.2    Pollard, K.S.3
  • 76
    • 27344443714 scopus 로고    scopus 로고
    • Near-optimal designs for dual channel microarray studies
    • Wit E, Nobile A, Khanin R. Near-optimal designs for dual channel microarray studies. Appl Stat 54: 817-830, 2005.
    • (2005) Appl Stat , vol.54 , pp. 817-830
    • Wit, E.1    Nobile, A.2    Khanin, R.3
  • 78
    • 34247880565 scopus 로고    scopus 로고
    • Wu H, Kerr K, Cui X, Churchill G. MAANOVA: a software package for the analysis of spotted cDNA microarray experiments. In: The Analysis of Gene Expression Data: Methods and Software, edited by Parmigiani G, Garrett ES, Irizarry R, and Zeger S. New York: Springer, 2002, p. 313-341.
    • Wu H, Kerr K, Cui X, Churchill G. MAANOVA: a software package for the analysis of spotted cDNA microarray experiments. In: The Analysis of Gene Expression Data: Methods and Software, edited by Parmigiani G, Garrett ES, Irizarry R, and Zeger S. New York: Springer, 2002, p. 313-341.
  • 80
    • 28444438861 scopus 로고    scopus 로고
    • A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data
    • Xie Y, Pan W, Khodursky AB. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Bioinformatics 21: 4280-4288, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 4280-4288
    • Xie, Y.1    Pan, W.2    Khodursky, A.B.3
  • 82
    • 33644769300 scopus 로고    scopus 로고
    • An improved procedure for gene selection from microarray experiments using false discovery rate criterion
    • Yang JJ, Yang MC. An improved procedure for gene selection from microarray experiments using false discovery rate criterion. BMC Bioinformatics 7: 15, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 15
    • Yang, J.J.1    Yang, M.C.2
  • 83
    • 1842535253 scopus 로고    scopus 로고
    • Microarray experimental design: Power and sample size considerations
    • Yang MC, Yang JJ, McIndoe RA, She JX. Microarray experimental design: power and sample size considerations. Physiol Genomics 16: 24-28, 2003.
    • (2003) Physiol Genomics , vol.16 , pp. 24-28
    • Yang, M.C.1    Yang, J.J.2    McIndoe, R.A.3    She, J.X.4
  • 84
    • 0036319960 scopus 로고    scopus 로고
    • Design issues for cDNA microarray experiments
    • Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat Rev Genet 3: 579-588, 2002.
    • (2002) Nat Rev Genet , vol.3 , pp. 579-588
    • Yang, Y.H.1    Speed, T.2
  • 89
    • 27744579507 scopus 로고    scopus 로고
    • An expression index for Affymetrix GeneChips based on the generalized logarithm
    • Zhou L, Rocke DM. An expression index for Affymetrix GeneChips based on the generalized logarithm. Bioinformatics 21: 3983-3989, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3983-3989
    • Zhou, L.1    Rocke, D.M.2
  • 90
    • 34247871609 scopus 로고    scopus 로고
    • Zhou Z, Peters EJ, Hamilton SP, McMahon F, Thomas C, McGrath PJ, Rush J, Trivedi MH, Charney DS, Roy A, Wisniewski S, Lipsky R, Goldman D. Response to Zhang et al. (2005): Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. Neuron 48: 702-703, 2005.
    • Zhou Z, Peters EJ, Hamilton SP, McMahon F, Thomas C, McGrath PJ, Rush J, Trivedi MH, Charney DS, Roy A, Wisniewski S, Lipsky R, Goldman D. Response to Zhang et al. (2005): Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11-16. Neuron 48: 702-703, 2005.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.