메뉴 건너뛰기




Volumn 19, Issue 3, 2007, Pages 672-705

Nonparametric modeling of neural point processes via stochastic gradient boosting regression

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTICLE; BAYES THEOREM; BIOLOGICAL MODEL; COMPARATIVE STUDY; CYTOLOGY; MONTE CARLO METHOD; NERVE CELL; NONPARAMETRIC TEST; PHYSIOLOGY; REGRESSION ANALYSIS; STATISTICS;

EID: 33847636281     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.3.672     Document Type: Article
Times cited : (30)

References (52)
  • 1
    • 0036063962 scopus 로고    scopus 로고
    • Construction and analysis of non-gaussian spatial models of neural spiking activity
    • Barbieri, R., Frank, L. M., Quirk, M. C., Solo, V., Wilson, M. A. & Brown, E. N. (2002). Construction and analysis of non-gaussian spatial models of neural spiking activity. Neurocomputing, 44-46, 309-314.
    • (2002) Neurocomputing , vol.44-46 , pp. 309-314
    • Barbieri, R.1    Frank, L.M.2    Quirk, M.C.3    Solo, V.4    Wilson, M.A.5    Brown, E.N.6
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 33847650765 scopus 로고    scopus 로고
    • Breiman, L. (1997). Arcing the edge (Techn. Rep. No. 486). Berkeley: Department of Statistics, University of California, Berkeley.
    • Breiman, L. (1997). Arcing the edge (Techn. Rep. No. 486). Berkeley: Department of Statistics, University of California, Berkeley.
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation, 11(7), 1493-1517.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 27444442456 scopus 로고    scopus 로고
    • BayesX: Analyzing Bayesian structured additive regression models
    • Brezger, A., Kneib, T., & Lang, S. (2005). BayesX: Analyzing Bayesian structured additive regression models. Journal of Statistical Software, 14(11), 1-22.
    • (2005) Journal of Statistical Software , vol.14 , Issue.11 , pp. 1-22
    • Brezger, A.1    Kneib, T.2    Lang, S.3
  • 8
    • 26444547624 scopus 로고    scopus 로고
    • Generalized structured additive regression based on Bayesian P-splines
    • Brezger A., & Lang, S. (2006). Generalized structured additive regression based on Bayesian P-splines. Computational Statistics and Data Analysis, 50, 967-991.
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 967-991
    • Brezger, A.1    Lang, S.2
  • 9
    • 0023686914 scopus 로고
    • Maximum likelihood analysis of spike trains of interacting nerve cells
    • Brillinger D. R. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cybernetics, 59, 189-200.
    • (1988) Biological Cybernetics , vol.59 , pp. 189-200
    • Brillinger, D.R.1
  • 10
    • 1542615171 scopus 로고    scopus 로고
    • Recursive Bayesian decoding of motor cortical signals by particle filtering
    • Brockwell, A. E., Rojas, A. L. & Kass, R. E. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91(2), 1899-1907.
    • (2004) Journal of Neurophysiology , vol.91 , Issue.2 , pp. 1899-1907
    • Brockwell, A.E.1    Rojas, A.L.2    Kass, R.E.3
  • 12
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2001). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14, 325-2346.
    • (2001) Neural Computation , vol.14 , pp. 325-2346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 13
    • 24944559686 scopus 로고    scopus 로고
    • Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo
    • Chen, D., & Fetz, E. E. (2005). Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo. Journal of Neurophysiology, 94, 2713-2725.
    • (2005) Journal of Neurophysiology , vol.94 , pp. 2713-2725
    • Chen, D.1    Fetz, E.E.2
  • 14
    • 0023688346 scopus 로고
    • Maximum likelihood identification of neuronal point process systems
    • Chornoboy, E. S., Schramm, L. P., & Karr, A. F. (1988). Maximum likelihood identification of neuronal point process systems. Biological Cybernetics, 59, 265-275.
    • (1988) Biological Cybernetics , vol.59 , pp. 265-275
    • Chornoboy, E.S.1    Schramm, L.P.2    Karr, A.F.3
  • 15
    • 0001573594 scopus 로고
    • Regression, prediction, and shrinkage (with discussion)
    • Copas, J. B. (1983). Regression, prediction, and shrinkage (with discussion). Journal of the Royal Statistical Society, B, 45, 311-354.
    • (1983) Journal of the Royal Statistical Society, B , vol.45 , pp. 311-354
    • Copas, J.B.1
  • 17
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-fitting with free-knot splines
    • DiMatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88, 1055-1071.
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • DiMatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 19
    • 1842733199 scopus 로고    scopus 로고
    • Dynamic analyses of neural encoding by point process adaptive filtering
    • Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analyses of neural encoding by point process adaptive filtering. Neural Computation, 16(5), 971-998.
    • (2004) Neural Computation , vol.16 , Issue.5 , pp. 971-998
    • Eden, U.T.1    Frank, L.M.2    Barbieri, R.3    Solo, V.4    Brown, E.N.5
  • 21
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89-102.
    • (1996) Statistical Science , vol.11 , pp. 89-102
    • Eilers, P.H.C.1    Marx, B.D.2
  • 22
    • 0036581332 scopus 로고    scopus 로고
    • Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinalcortex: An adaptive filtering approach
    • Frank, L. M., Eden, U. T., Solo, V., Wilson, M. A., & Brown, E. N. (2002). Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinalcortex: An adaptive filtering approach, Journal of Neuroscience, 22, 3817-3830.
    • (2002) Journal of Neuroscience , vol.22 , pp. 3817-3830
    • Frank, L.M.1    Eden, U.T.2    Solo, V.3    Wilson, M.A.4    Brown, E.N.5
  • 23
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. In European Conference, on Computational Learning Theory (pp. 23-27).
    • (1995) European Conference, on Computational Learning Theory , pp. 23-27
    • Freund, Y.1    Schapire, R.E.2
  • 24
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics, 19(1), 1-82.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-82
    • Friedman, J.H.1
  • 25
    • 0003743417 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Palo. Alto, CA: Stanford University, Statistics Department
    • Friedman, J. H. (1999). Stochastic gradient boosting (Tech. Rep.). Palo. Alto, CA: Stanford University, Statistics Department.
    • (1999) Tech. Rep
    • Friedman, J.H.1
  • 26
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 29
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Annals of Statistics, 28(2), 337-374.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 30
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generalized linear mixed models
    • Gamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 57-68.
    • (1997) Statistics and Computing , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 31
    • 33847659455 scopus 로고    scopus 로고
    • Probabilistic inference of hand motion from neural activity in motor cortex
    • T. G. Dietlerich, S. Becker, & Z. Ghahramani Eds, Cambridge, MA: MIT Press
    • Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., & Donoghue, J. P. (2001). Probabilistic inference of hand motion from neural activity in motor cortex. In T. G. Dietlerich, S. Becker, & Z. Ghahramani (Eds.), Advances in Neural information process systems, 14 (pp. 213-220). Cambridge, MA: MIT Press.
    • (2001) Advances in Neural information process systems , vol.14 , pp. 213-220
    • Gao, Y.1    Black, M.J.2    Bienenstock, E.3    Shoham, S.4    Donoghue, J.P.5
  • 32
    • 0000259956 scopus 로고
    • On transforming a certain class of stochastic processes by absolutely continuous substitution of measures
    • Girsanov, I. V. (1960). On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory of Probability and Its Applications, 5(3), 285-301.
    • (1960) Theory of Probability and Its Applications , vol.5 , Issue.3 , pp. 285-301
    • Girsanov, I.V.1
  • 34
    • 3142705768 scopus 로고    scopus 로고
    • Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles
    • Hatsopoulos, N., Joshi, J., & O'Leary, J. G. (2004). Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. Journal of Neurophysiology, 92, 1165-1174.
    • (2004) Journal of Neurophysiology , vol.92 , pp. 1165-1174
    • Hatsopoulos, N.1    Joshi, J.2    O'Leary, J.G.3
  • 36
    • 0035432526 scopus 로고    scopus 로고
    • A spike-train probability model
    • Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13, 1713-1720.
    • (2001) Neural Computation , vol.13 , pp. 1713-1720
    • Kass, R.E.1    Ventura, V.2
  • 37
    • 21844444549 scopus 로고    scopus 로고
    • Spline-based non-parametric regression for periodic functions and its application to directional tuning of neurons
    • Kaufman, C. G., Ventura, V., & Kass, R. E. (2005). Spline-based non-parametric regression for periodic functions and its application to directional tuning of neurons. Statistics in Medicine, 24(14), 2255-2265.
    • (2005) Statistics in Medicine , vol.24 , Issue.14 , pp. 2255-2265
    • Kaufman, C.G.1    Ventura, V.2    Kass, R.E.3
  • 38
    • 84898999495 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • T. G. Dietlerich, S. Becker, & Z. Ghahramanl Eds, Cambridge, MA: MIT Press
    • Lebanon, G., & Lafferty, J. (2002). Boosting and maximum likelihood for exponential models. In T. G. Dietlerich, S. Becker, & Z. Ghahramanl (Eds.), Neural information processing systems, 14 (pp. 447-454). Cambridge, MA: MIT Press.
    • (2002) Neural information processing systems , vol.14 , pp. 447-454
    • Lebanon, G.1    Lafferty, J.2
  • 39
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi, G., & Vayatis, N. (2004). On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics, 32(1), 30-55.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 40
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent
    • S. A. Solla, T. K. Leen, & K.-R. Müller Eds, Cambridge, MA: MIT Press
    • Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Neural information processing systems, 12 (pp. 512-518). Cambridge, MA: MIT Press.
    • (1999) Neural information processing systems , vol.12 , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 41
    • 23044490853 scopus 로고    scopus 로고
    • Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
    • Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17(9), 1927-1961.
    • (2005) Neural Computation , vol.17 , Issue.9 , pp. 1927-1961
    • Okatan, M.1    Wilson, M.A.2    Brown, E.N.3
  • 42
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15(4), 243-262.
    • (2004) Network , vol.15 , Issue.4 , pp. 243-262
    • Paninski, L.1
  • 44
    • 84966209651 scopus 로고
    • Integrability of expected increments of point processes and a related change of scale
    • Papangelou, F. (1972). Integrability of expected increments of point processes and a related change of scale. Transactions of the American Mathematical Society, 165, 483-506.
    • (1972) Transactions of the American Mathematical Society , vol.165 , pp. 483-506
    • Papangelou, F.1
  • 45
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Rosset, S., Zhu, J., & Hastie, T. (2004). Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research, 5, 941-973.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 46
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26, 1651-1686.
    • (1998) Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 48
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects
    • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects, Journal of Neurophysiology, 93(2), 1074-1089.
    • (2005) Journal of Neurophysiology , vol.93 , Issue.2 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 49
    • 33847638320 scopus 로고    scopus 로고
    • Truccolo, W., Vargas, C., Philip, B., & Donoghue, J. P. (2005). M1-5d Statistical interdependencies via dual multi-electrode array recordings. Society for Neuroscience, abstract 981.13, Washington, DC. Available online at http://sfn.scholarone.com/itin2005/index.html.
    • Truccolo, W., Vargas, C., Philip, B., & Donoghue, J. P. (2005). M1-5d Statistical interdependencies via dual multi-electrode array recordings. Society for Neuroscience, abstract 981.13, Washington, DC. Available online at http://sfn.scholarone.com/itin2005/index.html.
  • 51
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99, 673-686.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 673-686
    • Wood, S.N.1
  • 52
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Annals of Statistics, 32(1), 56-85.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.