메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 691-695

Using visual interpretation of small ensembles in microarray analysis

Author keywords

[No Author keywords available]

Indexed keywords

DATA ACQUISITION; DATA REDUCTION; GENES; GENETIC ENGINEERING; MATHEMATICAL MODELS;

EID: 33845564899     PISSN: 10637125     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CBMS.2006.169     Document Type: Conference Paper
Times cited : (15)

References (24)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting and variants," Machine Learning, 36(1/2):525-536, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 525-536
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision tress: Bagging, boosting and randomization
    • T.G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision tress: Bagging, boosting and randomization," Machine Learning, 40(2):139-158, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 4
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva and C. Whitaker, "Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy," Machine Learning, Vol. 51, pp. 181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 5
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • January
    • R. Setiono, "Extracting rules from neural networks by pruning and hidden-unit splitting," Neural Computation, Vol. 9, No. 1, January 1997, pages 205-225.
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 205-225
    • Setiono, R.1
  • 8
    • 1642273823 scopus 로고    scopus 로고
    • Ensembles of multi-instance learners
    • Proceedings of the 14th European Conference on Machine Learning (ECML'03), Cavtat-Dubrovnik, Croatia
    • Z.H. Zhou, and M.L. Zhang, "Ensembles of multi-instance learners," In: Proceedings of the 14th European Conference on Machine Learning (ECML'03), Cavtat-Dubrovnik, Croatia, LNAI 2837, 2003, pp.492-502.
    • (2003) LNAI , vol.2837 , pp. 492-502
    • Zhou, Z.H.1    Zhang, M.L.2
  • 9
    • 0006413391 scopus 로고    scopus 로고
    • Theory and scope of exact representation extraction from feed-forward networks
    • O. Melnik, and J.B. Pollack, "Theory and scope of exact representation extraction from feed-forward networks," Cognitive Systems Research 3(2), 2002.
    • (2002) Cognitive Systems Research , vol.3 , Issue.2
    • Melnik, O.1    Pollack, J.B.2
  • 15
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • G. Rätsch, T. Onoda, and K.R. Müller, "Soft margins for AdaBoost," Machine learning, Vol. 42, No. 3, pp. 287-320, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.R.3
  • 24
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Z.-H. Zhou and M. Li, "Tri-training: exploiting unlabeled data using three classifiers," IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.