메뉴 건너뛰기




Volumn 26, Issue 5, 2006, Pages 1363-1375

Uncertain numbers and uncertainty in the selection of input distributions - Consequences for a probabilistic risk assessment of contaminated land

Author keywords

Distribution assumptions; Imprecise numbers; Interval analysis; Monte Carlo analysis; Probability bounds analysis

Indexed keywords

DISTRIBUTION ASSUMPTIONS; IMPRECISE NUMBERS; INTERVAL ANALYSIS; PROBABILITY BOUNDS ANALYSIS;

EID: 33750188256     PISSN: 02724332     EISSN: 15396924     Source Type: Journal    
DOI: 10.1111/j.1539-6924.2006.00808.x     Document Type: Article
Times cited : (42)

References (50)
  • 5
    • 0036557496 scopus 로고    scopus 로고
    • A taxonomy and treatment of uncertainty for ecology and conservation biology
    • Regan, H. M., Colyvan, M., & Burgman, M. A. (2002). A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Applications, 12, 618-628.
    • (2002) Ecological Applications , vol.12 , pp. 618-628
    • Regan, H.M.1    Colyvan, M.2    Burgman, M.A.3
  • 7
    • 0030289763 scopus 로고    scopus 로고
    • Different methods are needed to propagate ignorance and variability
    • Ferson, S., & Ginzburg, L. R. (1996). Different methods are needed to propagate ignorance and variability. Reliability Engineering and System Safety, 54, 133-144.
    • (1996) Reliability Engineering and System Safety , vol.54 , pp. 133-144
    • Ferson, S.1    Ginzburg, L.R.2
  • 11
    • 28844488893 scopus 로고    scopus 로고
    • A review of probabilistic risk assessment of contaminated land
    • Öberg, T., & Bergbäck, B. (2005). A review of probabilistic risk assessment of contaminated land. Journal of Soils and Sediments, 5, 213-224.
    • (2005) Journal of Soils and Sediments , vol.5 , pp. 213-224
    • Öberg, T.1    Bergbäck, B.2
  • 12
    • 0028213348 scopus 로고
    • The benefits of probabilistic exposure assessment: Three case studies involving contaminated air, water, and soil
    • Finley, B., & Paustenbach, D. (1994). The benefits of probabilistic exposure assessment: Three case studies involving contaminated air, water, and soil. Risk Analysis, 14, 53-73.
    • (1994) Risk Analysis , vol.14 , pp. 53-73
    • Finley, B.1    Paustenbach, D.2
  • 14
    • 22844455396 scopus 로고    scopus 로고
    • Developing univariate distributions from data for risk analysis
    • Thompson, K. M. (1999). Developing univariate distributions from data for risk analysis. Human and Ecological Risk Assessment, 5, 755-783.
    • (1999) Human and Ecological Risk Assessment , vol.5 , pp. 755-783
    • Thompson, K.M.1
  • 15
    • 21444431585 scopus 로고    scopus 로고
    • Estimating exposure distributions: A caution for Monte Carlo risk assessment
    • Stanek III, E. J. (1996). Estimating exposure distributions: A caution for Monte Carlo risk assessment. Human and Ecological Risk Assessment, 2, 874-891.
    • (1996) Human and Ecological Risk Assessment , vol.2 , pp. 874-891
    • Stanek III, E.J.1
  • 16
    • 0031080650 scopus 로고    scopus 로고
    • Importance of distributional form in characterizing inputs to Monte Carlo risk assessments
    • Haas, C. N. (1997). Importance of distributional form in characterizing inputs to Monte Carlo risk assessments. Risk Analysis, 17, 107-113.
    • (1997) Risk Analysis , vol.17 , pp. 107-113
    • Haas, C.N.1
  • 17
    • 0003427614 scopus 로고    scopus 로고
    • U.S. EPA. Report EPA/630/R-97/01. Washington, DC: U.S. Environmental Protection Agency
    • U.S. EPA. (1997). Guiding Principles for Monte Carlo Analysis. Report EPA/630/R-97/01. Washington, DC: U.S. Environmental Protection Agency.
    • (1997) Guiding Principles for Monte Carlo Analysis
  • 18
    • 0027967069 scopus 로고
    • Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments
    • Burmaster, D. E., & Anderson, P. D. (1994). Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis, 14, 477-481.
    • (1994) Risk Analysis , vol.14 , pp. 477-481
    • Burmaster, D.E.1    Anderson, P.D.2
  • 20
    • 0029087019 scopus 로고
    • Correlated inputs in quantitative risk assessment - The effects of distributional shape
    • Bukowski, J., Korn, L., & Wartenberg, D. (1995). Correlated inputs in quantitative risk assessment - The effects of distributional shape. Risk Analysis, 15, 215-219.
    • (1995) Risk Analysis , vol.15 , pp. 215-219
    • Bukowski, J.1    Korn, L.2    Wartenberg, D.3
  • 21
    • 0028071605 scopus 로고    scopus 로고
    • Recommended distributions for exposure factors frequently used in health risk assessment
    • Finley, B., Proctor, D., Scott, P., Harrington, N., Paustenbach, D., & Price, P. (1996). Recommended distributions for exposure factors frequently used in health risk assessment. Risk Analysis, 14, 533-551.
    • (1996) Risk Analysis , vol.14 , pp. 533-551
    • Finley, B.1    Proctor, D.2    Scott, P.3    Harrington, N.4    Paustenbach, D.5    Price, P.6
  • 22
    • 22844457097 scopus 로고    scopus 로고
    • Distributions selected for use in probabilistic human health risk assessments in Oregon
    • Hope, B. K. (1999). Distributions selected for use in probabilistic human health risk assessments in Oregon. Human and Ecological Risk Assessment, 5, 785-808.
    • (1999) Human and Ecological Risk Assessment , vol.5 , pp. 785-808
    • Hope, B.K.1
  • 23
    • 0003432401 scopus 로고    scopus 로고
    • U.S. EPA. Report EPA/600/P-95/002F. Washington, DC: U.S. Environmental Protection Agency
    • U.S. EPA. (1997). Exposure Factors Handbook. Report EPA/600/P-95/002F. Washington, DC: U.S. Environmental Protection Agency.
    • (1997) Exposure Factors Handbook
  • 24
    • 21444432080 scopus 로고    scopus 로고
    • Using Monte Carlo analysis to quantify uncertainty in ecological risk assessment: Are we gilding the lily or bronzing the dandelion?
    • Moore, D. R. J. (1996). Using Monte Carlo analysis to quantify uncertainty in ecological risk assessment: Are we gilding the lily or bronzing the dandelion? Human and Ecological Risk Assessment, 2, 628-633.
    • (1996) Human and Ecological Risk Assessment , vol.2 , pp. 628-633
    • Moore, D.R.J.1
  • 25
    • 2642538435 scopus 로고    scopus 로고
    • Implications of the research on expert over-confidence and dependence
    • Bier, V. (2004). Implications of the research on expert over-confidence and dependence. Reliability Engineering and System Safety, 85, 321-329.
    • (2004) Reliability Engineering and System Safety , vol.85 , pp. 321-329
    • Bier, V.1
  • 26
    • 0034927621 scopus 로고    scopus 로고
    • Disparity in quantitative risk assessment: A review of input distributions
    • Binkowitz, B.S., & Wartenberg, D. (2001). Disparity in quantitative risk assessment: A review of input distributions. Risk Analysis, 21, 75-90.
    • (2001) Risk Analysis , vol.21 , pp. 75-90
    • Binkowitz, B.S.1    Wartenberg, D.2
  • 27
    • 8844263074 scopus 로고    scopus 로고
    • Standardized approach for developing probabilistic exposure factor distributions
    • Maddalena, R. L., McKone, T. E., & Sohn, M.D. (2004). Standardized approach for developing probabilistic exposure factor distributions. Risk Analysis, 24, 1185-1199.
    • (2004) Risk Analysis , vol.24 , pp. 1185-1199
    • Maddalena, R.L.1    McKone, T.E.2    Sohn, M.D.3
  • 28
    • 28144451212 scopus 로고    scopus 로고
    • Influence of distributional shape of substance parameters on exposure model output
    • Lessmann, K., Beyer, A., Klasmeier, J., & Matthies, M. (2005). Influence of distributional shape of substance parameters on exposure model output. Risk Analysis, 25, 1137-1145.
    • (2005) Risk Analysis , vol.25 , pp. 1137-1145
    • Lessmann, K.1    Beyer, A.2    Klasmeier, J.3    Matthies, M.4
  • 29
    • 8544253810 scopus 로고    scopus 로고
    • Characterization and simulation of uncertain frequency distributions: Effects of distribution choice, variability, uncertainty, and parameter dependence
    • Frey, H. C., & Rhodes, D. S. (1998). Characterization and simulation of uncertain frequency distributions: Effects of distribution choice, variability, uncertainty, and parameter dependence. Human and Ecological Risk Assessment, 4, 423-468.
    • (1998) Human and Ecological Risk Assessment , vol.4 , pp. 423-468
    • Frey, H.C.1    Rhodes, D.S.2
  • 30
    • 21444441311 scopus 로고    scopus 로고
    • Monte Carlo modeling with uncertain probability density functions
    • Brattin, W. J., Barry, T. M., & Chiu, N. (1996). Monte Carlo modeling with uncertain probability density functions. Human and Ecological Risk Assessment, 2, 820-840.
    • (1996) Human and Ecological Risk Assessment , vol.2 , pp. 820-840
    • Brattin, W.J.1    Barry, T.M.2    Chiu, N.3
  • 31
    • 0034118994 scopus 로고    scopus 로고
    • Impact of random variables probability distribution on public health risk assessment from contaminated soil
    • Hamed, M. M. (2000). Impact of random variables probability distribution on public health risk assessment from contaminated soil. Journal of Soil Contamination, 9, 99-117.
    • (2000) Journal of Soil Contamination , vol.9 , pp. 99-117
    • Hamed, M.M.1
  • 32
    • 0002063018 scopus 로고
    • Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds
    • Williamson, R. C., & Downs, T. (1990). Probabilistic arithmetic I: Numerical methods for calculating convolutions and dependency bounds. International Journal of Approximate Reasoning, 4, 89-158.
    • (1990) International Journal of Approximate Reasoning , vol.4 , pp. 89-158
    • Williamson, R.C.1    Downs, T.2
  • 33
    • 0001503499 scopus 로고
    • Best-possible bounds for the distribution of a sum - Problem of Kolmogorov
    • Frank, M. J., Nelsen, R. B., & Schweizer, B. (1987). Best-possible bounds for the distribution of a sum - Problem of Kolmogorov. Probability Theory and Related Fields, 74, 199-211.
    • (1987) Probability Theory and Related Fields , vol.74 , pp. 199-211
    • Frank, M.J.1    Nelsen, R.B.2    Schweizer, B.3
  • 34
    • 2642539278 scopus 로고    scopus 로고
    • Arithmetic with uncertain numbers: Rigorous and (often) best possible answers
    • Ferson, S., & Hajagos, J. G. (2004). Arithmetic with uncertain numbers: Rigorous and (often) best possible answers. Reliability Engineering and System Safety, 85, 135-152.
    • (2004) Reliability Engineering and System Safety , vol.85 , pp. 135-152
    • Ferson, S.1    Hajagos, J.G.2
  • 35
    • 16344382080 scopus 로고    scopus 로고
    • Utilizing belief functions for the estimation of future climate change
    • Kriegler, E., & Held, H. (2005). Utilizing belief functions for the estimation of future climate change. International Journal of Approximate Reasoning, 39, 185-209.
    • (2005) International Journal of Approximate Reasoning , vol.39 , pp. 185-209
    • Kriegler, E.1    Held, H.2
  • 36
    • 0028830444 scopus 로고
    • Correlations, dependency bounds and extinction risks
    • Ferson, S., & Burgman, M. A. (1995). Correlations, dependency bounds and extinction risks. Biological Conservation, 73, 101-105.
    • (1995) Biological Conservation , vol.73 , pp. 101-105
    • Ferson, S.1    Burgman, M.A.2
  • 37
    • 1542769835 scopus 로고    scopus 로고
    • Analysis and portrayal of uncertainty in a food-web exposure model
    • Regan, H. M., Hope, B. Y., & Ferson, S. (2002). Analysis and portrayal of uncertainty in a food-web exposure model. Human and Ecological Risk Assessment, 8, 1757-1777.
    • (2002) Human and Ecological Risk Assessment , vol.8 , pp. 1757-1777
    • Regan, H.M.1    Hope, B.Y.2    Ferson, S.3
  • 38
    • 0037376110 scopus 로고    scopus 로고
    • Precaution, uncertainty and causation in environmental decisions
    • Ricci, P. F., Rice, D., Ziagos, J., & Cox, L. A. (2003). Precaution, uncertainty and causation in environmental decisions. Environment International, 29, 1-19.
    • (2003) Environment International , vol.29 , pp. 1-19
    • Ricci, P.F.1    Rice, D.2    Ziagos, J.3    Cox, L.A.4
  • 40
    • 0346665897 scopus 로고    scopus 로고
    • Comparison of deterministic and probabilistic calculation of ecological soil screening levels
    • Regan, H. M., Sample, B. E., & Ferson, S. (2002). Comparison of deterministic and probabilistic calculation of ecological soil screening levels. Environmental Toxicology and Chemistry, 21, 882-890.
    • (2002) Environmental Toxicology and Chemistry , vol.21 , pp. 882-890
    • Regan, H.M.1    Sample, B.E.2    Ferson, S.3
  • 41
    • 33644837652 scopus 로고    scopus 로고
    • Comparing deterministic and probabilistic risk assessments. a case study at a closed steel mill in southern Sweden
    • Sander, P., & Öberg, T. (2006). Comparing deterministic and probabilistic risk assessments. A case study at a closed steel mill in southern Sweden. Journal of Soils and Sediments, 6, 55-61.
    • (2006) Journal of Soils and Sediments , vol.6 , pp. 55-61
    • Sander, P.1    Öberg, T.2
  • 45
    • 31944440290 scopus 로고    scopus 로고
    • Accounting for both random errors and systematic errors in uncertainty propagation analysis of computer models involving experimental measurements with Monte Carlo methods
    • Vasquez, V. R., & Whiting, W. B. (2005). Accounting for both random errors and systematic errors in uncertainty propagation analysis of computer models involving experimental measurements with Monte Carlo methods. Risk Analysis, 25, 1669-1681.
    • (2005) Risk Analysis , vol.25 , pp. 1669-1681
    • Vasquez, V.R.1    Whiting, W.B.2
  • 46
    • 0028147006 scopus 로고
    • An improved framework for uncertainty analysis: Accounting for unsuspected errors
    • Shlyakhter, A. I. (1994). An improved framework for uncertainty analysis: Accounting for unsuspected errors. Risk Analysis, 14, 441-447.
    • (1994) Risk Analysis , vol.14 , pp. 441-447
    • Shlyakhter, A.I.1
  • 48
    • 33645107214 scopus 로고    scopus 로고
    • Implications of excessive precision for risk comparisons: Lessons from the past four decades
    • Hassenzahl, D. M. (2006). Implications of excessive precision for risk comparisons: Lessons from the past four decades. Risk Analysis, 26, 1-12.
    • (2006) Risk Analysis , vol.26 , pp. 1-12
    • Hassenzahl, D.M.1
  • 49
    • 3042755044 scopus 로고    scopus 로고
    • How useful is quantitative risk assessment?
    • Apostolakis, G. E. (2004). How useful is quantitative risk assessment? Risk Analysis, 24, 515-520.
    • (2004) Risk Analysis , vol.24 , pp. 515-520
    • Apostolakis, G.E.1
  • 50
    • 54249134055 scopus 로고    scopus 로고
    • Uncertainty as information: Narrowing the science-policy gap
    • Available at
    • Bradshaw, G. A., & Borchers, J. G. (2000). Uncertainty as information: Narrowing the science-policy gap. Conservation Ecology, 4, 7. Available at http://www.consecol.org/vol4/iss1/art7/.
    • (2000) Conservation Ecology , vol.4 , pp. 7
    • Bradshaw, G.A.1    Borchers, J.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.