메뉴 건너뛰기




Volumn 17, Issue 5, 2006, Pages 1101-1115

Feature selection using a piecewise linear network

Author keywords

Feature selection; Floating search; Orthonormal least squares (OLS); Piecewise linear network (PLN); Regression

Indexed keywords

FLOATING SEARCH; ORTHONORMAL LEAST SQUARES (OLS); PIECEWISE LINEAR NETWORK (PLN); REGRESSION PROBLEMS;

EID: 33750124786     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2006.877531     Document Type: Article
Times cited : (48)

References (57)
  • 1
    • 0035329583 scopus 로고    scopus 로고
    • Selecting inputs for modelling using normalized higher order statistics and independent component analysis
    • May
    • A. D. Back and T. P. Trappenberg, "Selecting inputs for modelling using normalized higher order statistics and independent component analysis," IEEE Trans. Neural Netw., vol. 12, no. 3, pp. 612-617, May 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.3 , pp. 612-617
    • Back, A.D.1    Trappenberg, T.P.2
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, no. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 3
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 4
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • Jan
    • T. W. S. Chow and D. Huang, "Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 213-224, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 213-224
    • Chow, T.W.S.1    Huang, D.2
  • 6
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • N. Kambhatla and T. K. Leen, "Dimension reduction by local principal component analysis," Neural Comput., vol. 9, no. 7, pp. 1493-1516, 1997.
    • (1997) Neural Comput , vol.9 , Issue.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 7
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • Nov
    • J. T. Kwok and I. W. Tsang, "The pre-image problem in kernel methods," IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1517-1525, Nov. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.T.1    Tsang, I.W.2
  • 8
    • 1242331294 scopus 로고    scopus 로고
    • A nonnegative PCA algorithm for independent component analysis
    • Jan
    • M. D. Plumbley and E. Oja, "A nonnegative PCA algorithm for independent component analysis," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 66-76, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.1 , pp. 66-76
    • Plumbley, M.D.1    Oja, E.2
  • 9
    • 0036740201 scopus 로고    scopus 로고
    • Fast orthogonal forward selection algorithm for feature subset selection
    • Sep
    • K. Z. Mao, "Fast orthogonal forward selection algorithm for feature subset selection," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1218-1224, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1218-1224
    • Mao, K.Z.1
  • 10
    • 0742307292 scopus 로고    scopus 로고
    • Orthogonal forward selection and backward elimination algorithms for feature subset selection
    • Feb
    • K. Z. Mao, "Orthogonal forward selection and backward elimination algorithms for feature subset selection," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 629-634, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.1 , pp. 629-634
    • Mao, K.Z.1
  • 11
    • 2942734703 scopus 로고    scopus 로고
    • Benefitting from the variables that variable selection discards
    • R. Caruana and V. De Sa, "Benefitting from the variables that variable selection discards," J. Mach. Learn. Res., vol. 3, pp. 1245-1264, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1245-1264
    • Caruana, R.1    De Sa, V.2
  • 12
    • 0032674833 scopus 로고    scopus 로고
    • A formal selection and pruning algorithm for feedforward artificial network optimization
    • Jul
    • Ponnapalli, "A formal selection and pruning algorithm for feedforward artificial network optimization," IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 964-968, Jul. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.4 , pp. 964-968
    • Ponnapalli1
  • 13
    • 0001352974 scopus 로고
    • Pruning from adaptive regularization
    • L. K. Kansen and C. E. Rasmussen, "Pruning from adaptive regularization," Neural Comput., vol. 6, no. 6, pp. 1223-1232, 1994.
    • (1994) Neural Comput , vol.6 , Issue.6 , pp. 1223-1232
    • Kansen, L.K.1    Rasmussen, C.E.2
  • 14
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Sep
    • R. Reed, "Pruning algorithms - A survey," IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 740-747, Sep. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 16
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • May
    • T. Y. Kwok and D. Y. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 630-645, May 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 17
    • 0042525842 scopus 로고    scopus 로고
    • Neural-network construction and selection in nonlinear modeling
    • Jul
    • I. Rivals and L. Personnaz, "Neural-network construction and selection in nonlinear modeling," IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 804-819, Jul. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.4 , pp. 804-819
    • Rivals, I.1    Personnaz, L.2
  • 18
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Jan
    • G. B. Huang, P. Saratchandran, and N. Sundararajan, "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57-67, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 19
    • 0038495007 scopus 로고    scopus 로고
    • Optimal pruning of feed-forward neural networks based upon the Schmidt procedure
    • F. J. Maldonado and M. T. Manry, "Optimal pruning of feed-forward neural networks based upon the Schmidt procedure," in 36th Asilomar Conf. Signals, Systems Computers, 2002, pp. 1024-1028.
    • (2002) 36th Asilomar Conf. Signals, Systems Computers , pp. 1024-1028
    • Maldonado, F.J.1    Manry, M.T.2
  • 21
    • 0027577112 scopus 로고
    • Bayesian selection of important features for feedforward neural networks
    • 3, pp
    • K. L. Priddy, S. K. Rogers, D. W. Ruch, G. L. Tarr, and M. Kabrisky, "Bayesian selection of important features for feedforward neural networks," Neurocomput., vol. 5, no. 2, 3, pp. 91-103, 1993.
    • (1993) Neurocomput , vol.5 , Issue.2 , pp. 91-103
    • Priddy, K.L.1    Rogers, S.K.2    Ruch, D.W.3    Tarr, G.L.4    Kabrisky, M.5
  • 22
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Jan
    • P. Leray and P. Gallinari, "Feature selection with neural networks," Behaviormetrika, vol. 26, Jan. 1999.
    • (1999) Behaviormetrika , vol.26
    • Leray, P.1    Gallinari, P.2
  • 24
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovičová, and J. Kittler, "Floating search methods in feature selection," Pattern Recognit. Lett., vol. 15, pp. 1119-1125, 1994.
    • (1994) Pattern Recognit. Lett , vol.15 , pp. 1119-1125
    • Pudil, P.1    Novovičová, J.2    Kittler, J.3
  • 25
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Sep
    • P. M. Narendra and K. Fukunaga, "A branch and bound algorithm for feature subset selection," IEEE Trans. Comput., vol. C-26, no. 9, pp. 917-922, Sep. 1977.
    • (1977) IEEE Trans. Comput , vol.C-26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 26
  • 27
    • 0346825283 scopus 로고    scopus 로고
    • Mlps (mono-layer polynomials and multi-layer perceptrons) for nonlinear modeling
    • I. Rivals and L. Personnaz, "Mlps (mono-layer polynomials and multi-layer perceptrons) for nonlinear modeling," J. Mach. Learn. Res., vol. 3, pp. 1383-1398, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1383-1398
    • Rivals, I.1    Personnaz, L.2
  • 28
    • 2942701493 scopus 로고    scopus 로고
    • Ranking a random feature for variable and feature selection
    • H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar, "Ranking a random feature for variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1399-1414, 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1399-1414
    • Stoppiglia, H.1    Dreyfus, G.2    Dubois, R.3    Oussar, Y.4
  • 29
    • 0038548172 scopus 로고    scopus 로고
    • Sparse kernel regression modelling using combined locally regularised orthogonal least squares and D-Optimality experimental design
    • Jun
    • S. Chen, X. Hong, and C. J. Harris, "Sparse kernel regression modelling using combined locally regularised orthogonal least squares and D-Optimality experimental design," IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 1029-1026, Jun. 2003.
    • (2003) IEEE Trans. Autom. Control , vol.48 , Issue.6 , pp. 1029-1026
    • Chen, S.1    Hong, X.2    Harris, C.J.3
  • 30
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modelling using orthogonal forward regression with PRESS statistic and regularization
    • Apr
    • S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, "Sparse modelling using orthogonal forward regression with PRESS statistic and regularization," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 2, pp. 898-911, Apr. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 31
    • 0035245192 scopus 로고    scopus 로고
    • Variable selection algorithm for the construction of MIMO operating point dependent neurofuzzy networks
    • Feb
    • X. Hong and C. J. Harris, "Variable selection algorithm for the construction of MIMO operating point dependent neurofuzzy networks," IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 88-101, Feb. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.1 , pp. 88-101
    • Hong, X.1    Harris, C.J.2
  • 32
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares methods and their application to non-linear system identification," Int. J. Control, vol. 50, no. 5, pp. 1873-1896, 1989.
    • (1989) Int. J. Control , vol.50 , Issue.5 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 33
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 34
    • 84949203556 scopus 로고    scopus 로고
    • Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models
    • S. Chen, "Locally regularised orthogonal least squares algorithm for the construction of sparse kernel regression models," in Proc. 6th Int. Conf. Signal Processing, 2002, vol. 2, pp. 1229-1232.
    • (2002) Proc. 6th Int. Conf. Signal Processing , vol.2 , pp. 1229-1232
    • Chen, S.1
  • 35
    • 0023381883 scopus 로고
    • Piecewise linear identification of nonlinear systems
    • S. A. Billings and W. S. F. Voon, "Piecewise linear identification of nonlinear systems," Int. J. Control, vol. 46, pp. 215-235, 1987.
    • (1987) Int. J. Control , vol.46 , pp. 215-235
    • Billings, S.A.1    Voon, W.S.F.2
  • 37
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. H. Friedman, "Multivariate adaptive regression splines," Ann. Statistics, vol. 19, no. 1, pp. 1-141, 1991.
    • (1991) Ann. Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 38
    • 0016556021 scopus 로고
    • A new approach to manipulator control: The cerebellar model articulation controller (CMAC)
    • J. S. Albus, "A new approach to manipulator control: The cerebellar model articulation controller (CMAC)," J. Dynam. Syst., Meas. Control - Trans. ASME, vol. 97, no. 3, pp. 220-227, 1975.
    • (1975) J. Dynam. Syst., Meas. Control - Trans. ASME , vol.97 , Issue.3 , pp. 220-227
    • Albus, J.S.1
  • 39
    • 0016555419 scopus 로고
    • Data storage in the cerebellar model articulation controller (CMAC)
    • J. S. Albus, "Data storage in the cerebellar model articulation controller (CMAC)," J. Dynam. Syst., Meas. Control - Trans. ASME, vol. 97, no. 3, pp. 228-233, 1975.
    • (1975) J. Dynam. Syst., Meas. Control - Trans. ASME , vol.97 , Issue.3 , pp. 228-233
    • Albus, J.S.1
  • 40
    • 0010112552 scopus 로고    scopus 로고
    • A Local Approach for Sizing the Multilayer Perceptron,
    • Ph.D. dissertation, Dept. Elect. Eng, Univ. Texas, Arlington
    • K. K. Kim, "A Local Approach for Sizing the Multilayer Perceptron," Ph.D. dissertation, Dept. Elect. Eng., Univ. Texas, Arlington, 1996.
    • (1996)
    • Kim, K.K.1
  • 42
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay, "Bayesian interpolation," Neural Comput., vol. 4, no. 3, pp. 415-447, 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 43
    • 0029368179 scopus 로고
    • Network-growth approach to design of feed-forward neural networks
    • F. L. Chung and T. Lee, "Network-growth approach to design of feed-forward neural networks," IEE Proc. Control Theory Applications, vol. 142, no. 5, pp. 486-492, 1995.
    • (1995) IEE Proc. Control Theory Applications , vol.142 , Issue.5 , pp. 486-492
    • Chung, F.L.1    Lee, T.2
  • 44
    • 0025964567 scopus 로고
    • Back-propagation algorithm that varies the number of hidden units
    • Y. Hirose, K. Yamashita, and S. Hijiya, "Back-propagation algorithm that varies the number of hidden units," Neural Netw., vol. 4, pp. 61-66, 1991.
    • (1991) Neural Netw , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 46
    • 0028544395 scopus 로고
    • Network information criterion-determining the number of hidden units for an artificial neural network model
    • Nov
    • N. Murata, S. Yoshizawa, and S. Amari, "Network information criterion-determining the number of hidden units for an artificial neural network model," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 865-872, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 49
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification an validation of cancer tissue samples using microarray expression data
    • T. Furey, N. C. Duffy, N. Bednarski, D. M. Schummer, and D. Haussler, "Support vector machine classification an validation of cancer tissue samples using microarray expression data," Bioinformatics, vol. 16, pp. 906-914, 2000.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Duffy, N.C.2    Bednarski, N.3    Schummer, D.M.4    Haussler, D.5
  • 50
    • 0029941179 scopus 로고    scopus 로고
    • Spatial pattern analysis of functional brain images using partial least squares
    • A. R. McIntosh, F. L. Bookstein, J. V. Haxby, and C. L. Grady, "Spatial pattern analysis of functional brain images using partial least squares," Neuroimage, vol. 3, pp. 143-157, 1996.
    • (1996) Neuroimage , vol.3 , pp. 143-157
    • McIntosh, A.R.1    Bookstein, F.L.2    Haxby, J.V.3    Grady, C.L.4
  • 51
    • 0001098205 scopus 로고
    • chapter Estimation of Principal Components and Related Models by Iterative Least Squares
    • New York: Academic Press
    • H. Wold, "chapter Estimation of Principal Components and Related Models by Iterative Least Squares," in Multivariate Analysis. New York: Academic Press, 1966, pp. 391-420.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 52
    • 84871900799 scopus 로고    scopus 로고
    • A Comprehensive Foundation
    • 2 ed. Englewood Cliffs, N.J, Prentice-Hall
    • S. Haykin, "A Comprehensive Foundation," in Neural Networks, 2 ed. Englewood Cliffs, N.J.: Prentice-Hall, 1999.
    • (1999) Neural Networks
    • Haykin, S.1
  • 53
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. Lin, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Netw., vol. 6, no. 6, pp. 861-867, 1993.
    • (1993) Neural Netw , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Schocken, S.3
  • 56
    • 1542365112 scopus 로고    scopus 로고
    • Dimensionality reduction via sparse support vector machines
    • Mar
    • J. Bi, K. P. Bennett, M. Embrechts, C. M. Breneman, and M. Song, "Dimensionality reduction via sparse support vector machines," J. Mach. Learn. Res., vol. 3, pp. 1229-1243, Mar. 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1229-1243
    • Bi, J.1    Bennett, K.P.2    Embrechts, M.3    Breneman, C.M.4    Song, M.5
  • 57
    • 0027382740 scopus 로고
    • Surface parameter retrieval using fast learning neural networks
    • M. S. Dawson, A. K. Fung, and M. T. Manry, "Surface parameter retrieval using fast learning neural networks," Remote Sens. Rev., vol. 7, no. 1, pp. 1-18, 1993.
    • (1993) Remote Sens. Rev , vol.7 , Issue.1 , pp. 1-18
    • Dawson, M.S.1    Fung, A.K.2    Manry, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.