메뉴 건너뛰기




Volumn 30, Issue 1, 2006, Pages 80-88

Diverse signals regulate glucose uptake into skeletal muscle

Author keywords

GLUT4; Insulin signalling

Indexed keywords

5' ADENOSINE PHOSPHATE ACTIVATED PROTEIN KINASE; CALCIUM ION; GLUCOSE TRANSPORTER 4; MITOGEN ACTIVATED PROTEIN KINASE; PHOSPHATIDYLINOSITOL KINASE; PHOSPHOTRANSFERASE; PROTEIN KINASE C; UNCLASSIFIED DRUG;

EID: 33748760944     PISSN: 14992671     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1499-2671(06)01006-9     Document Type: Article
Times cited : (13)

References (64)
  • 1
    • 10344236432 scopus 로고    scopus 로고
    • Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes
    • Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev. 2004;25:177-204.
    • (2004) Endocr Rev , vol.25 , pp. 177-204
    • Watson, R.T.1    Kanzaki, M.2    Pessin, J.E.3
  • 2
    • 24044468429 scopus 로고    scopus 로고
    • Turning signals on and off: GLUT4 traffic in the insulin-signalling highway
    • Thong FS, Dugani CB, Klip A. Turning signals on and off: GLUT4 traffic in the insulin-signalling highway. Physiology. 2005;20:271-284.
    • (2005) Physiology , vol.20 , pp. 271-284
    • Thong, F.S.1    Dugani, C.B.2    Klip, A.3
  • 3
    • 33646707285 scopus 로고    scopus 로고
    • Tackling the insulin-signalling cascade
    • Glund S, Zierath JR. Tackling the insulin-signalling cascade. Can J Diabetes. 2005;29:239-245.
    • (2005) Can J Diabetes , vol.29 , pp. 239-245
    • Glund, S.1    Zierath, J.R.2
  • 5
    • 0029072564 scopus 로고
    • Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: Comparison with insulin action
    • Tsakiridis T, Vranic M, Klip A. Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: comparison with insulin action. Biochem J. 1995;309:1-5.
    • (1995) Biochem J , vol.309 , pp. 1-5
    • Tsakiridis, T.1    Vranic, M.2    Klip, A.3
  • 6
    • 0029978799 scopus 로고    scopus 로고
    • Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise
    • Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol Endocrinol Metab. 1996;270: E299-E304.
    • (1996) Am J Physiol Endocrinol Metab , vol.270
    • Winder, W.W.1    Hardie, D.G.2
  • 7
    • 0031009673 scopus 로고    scopus 로고
    • Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle
    • Vavvas D, Apazidis A, Saha AK, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997;272:13255-13261.
    • (1997) J Biol Chem , vol.272 , pp. 13255-13261
    • Vavvas, D.1    Apazidis, A.2    Saha, A.K.3
  • 8
    • 0031849916 scopus 로고    scopus 로고
    • Evidence for 5′-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
    • Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5′-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998;47:1369-1373.
    • (1998) Diabetes , vol.47 , pp. 1369-1373
    • Hayashi, T.1    Hirshman, M.F.2    Kurth, E.J.3
  • 11
    • 0034070567 scopus 로고    scopus 로고
    • Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism
    • Hayashi T, Hirschman MF, Fujii N, et al. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 2000; 49:527-531.
    • (2000) Diabetes , vol.49 , pp. 527-531
    • Hayashi, T.1    Hirschman, M.F.2    Fujii, N.3
  • 12
    • 0033855903 scopus 로고    scopus 로고
    • Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle
    • Derave W, Ai H, Ihlemann J, et al. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes. 2000;49:1281-1287.
    • (2000) Diabetes , vol.49 , pp. 1281-1287
    • Derave, W.1    Ai, H.2    Ihlemann, J.3
  • 13
    • 0035947235 scopus 로고    scopus 로고
    • A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle
    • Mu J, Brozinick JT Jr, Valladares O, et al. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001;7:1085-1094.
    • (2001) Mol Cell , vol.7 , pp. 1085-1094
    • Mu, J.1    Brozinick Jr., J.T.2    Valladares, O.3
  • 14
    • 0037326943 scopus 로고    scopus 로고
    • Selective suppression of AMP-activated protein kinase in skeletal muscle: Update on 'lazy mice'
    • Mu J, Barton ER, Birnbaum MJ. Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice'. Biochem Soc Trans. 2003;31:236-241.
    • (2003) Biochem Soc Trans , vol.31 , pp. 236-241
    • Mu, J.1    Barton, E.R.2    Birnbaum, M.J.3
  • 15
    • 0345832116 scopus 로고    scopus 로고
    • Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4- ribofuranoside but not contraction-induced glucose uptake in skeletal muscle
    • Jorgensen SB, Viollet B, Andreelli F, et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem. 2004;279:1070-1079.
    • (2004) J Biol Chem , vol.279 , pp. 1070-1079
    • Jorgensen, S.B.1    Viollet, B.2    Andreelli, F.3
  • 16
    • 4644309036 scopus 로고    scopus 로고
    • The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle
    • Barnes BR, Marklund S, Steiler TL, et al. The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem. 2004;279:38441-38447.
    • (2004) J Biol Chem , vol.279 , pp. 38441-38447
    • Barnes, B.R.1    Marklund, S.2    Steiler, T.L.3
  • 19
    • 0025825770 scopus 로고
    • Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction
    • Youn JH, Gulve EA, Holloszy JO. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol Cell Physiol. 1991;260:C555-C561.
    • (1991) Am J Physiol Cell Physiol , vol.260
    • Youn, J.H.1    Gulve, E.A.2    Holloszy, J.O.3
  • 20
    • 0038070931 scopus 로고    scopus 로고
    • + pump regulation and skeletal muscle contractility
    • + pump regulation and skeletal muscle contractility. Physiol Rev. 2003;83:1269-1324.
    • (2003) Physiol Rev , vol.83 , pp. 1269-1324
    • Clausen, T.1
  • 21
    • 0025904870 scopus 로고
    • Stimulation of glucose transport in skeletal muscle by hypoxia
    • Cartee GD, Douen AG, Ramlal T, et al. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol. 1991; 70:1593-1600.
    • (1991) J Appl Physiol , vol.70 , pp. 1593-1600
    • Cartee, G.D.1    Douen, A.G.2    Ramlal, T.3
  • 22
    • 0842288475 scopus 로고    scopus 로고
    • Ca(2+) and AMPK both mediate stimulation of glucose transport by muscle contractions
    • Wright DC, Hucker KA, Holloszy JO, et al. Ca(2+) and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes. 2004;53:330-335.
    • (2004) Diabetes , vol.53 , pp. 330-335
    • Wright, D.C.1    Hucker, K.A.2    Holloszy, J.O.3
  • 23
    • 0029077455 scopus 로고
    • Effects of insulin on the translocation of protein kinase C-theta and other protein kinase C isoforms in rat skeletal muscles
    • Yamada K, Avignon A, Standaert ML, et al. Effects of insulin on the translocation of protein kinase C-theta and other protein kinase C isoforms in rat skeletal muscles. Biochem J. 1995; 308:177-180.
    • (1995) Biochem J , vol.308 , pp. 177-180
    • Yamada, K.1    Avignon, A.2    Standaert, M.L.3
  • 24
    • 11344280545 scopus 로고    scopus 로고
    • Effect of exercise on protein kinase C activity and localisation in human skeletal muscle
    • Rose AJ, Michell BJ, Kemp BE, et al. Effect of exercise on protein kinase C activity and localisation in human skeletal muscle. J Physiol (Lond). 2004;561:861-870.
    • (2004) J Physiol (Lond) , vol.561 , pp. 861-870
    • Rose, A.J.1    Michell, B.J.2    Kemp, B.E.3
  • 25
    • 0028931623 scopus 로고
    • The phorbol ester TPA markedly enhances the binding of calcium to the regulatory domain of protein kinase C beta 1 in the presence of phosphatidylserine
    • Luo JH, Xing WQ, Weinstein IB. The phorbol ester TPA markedly enhances the binding of calcium to the regulatory domain of protein kinase C beta 1 in the presence of phosphatidylserine. Carcinogenesis. 1995;16:897-905.
    • (1995) Carcinogenesis , vol.16 , pp. 897-905
    • Luo, J.H.1    Xing, W.Q.2    Weinstein, I.B.3
  • 26
    • 0024434397 scopus 로고
    • Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport
    • Cleland PJ, Appleby GJ, Rattigan S, et al. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J Biol Chem. 1989;264:17704-17711.
    • (1989) J Biol Chem , vol.264 , pp. 17704-17711
    • Cleland, P.J.1    Appleby, G.J.2    Rattigan, S.3
  • 27
    • 0025317854 scopus 로고
    • 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin
    • Turinsky J, Bayly BP, O'Sullivan DM. 1,2-diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem. 1990;265:7933-7938.
    • (1990) J Biol Chem , vol.265 , pp. 7933-7938
    • Turinsky, J.1    Bayly, B.P.2    O'Sullivan, D.M.3
  • 28
    • 0023278215 scopus 로고
    • Contraction-associated translocation of protein kinase C in rat skeletal muscle
    • Richter EA, Cleland PJ, Rattigan S, et al. Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett. 1987;217:232-236.
    • (1987) FEBS Lett , vol.217 , pp. 232-236
    • Richter, E.A.1    Cleland, P.J.2    Rattigan, S.3
  • 29
    • 0029019655 scopus 로고
    • Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain
    • Hong DH, Huan J, Ou BR, et al. Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain. Biochim Biophys Acta. 1995;1267:45-54.
    • (1995) Biochim Biophys Acta , vol.1267 , pp. 45-54
    • Hong, D.H.1    Huan, J.2    Ou, B.R.3
  • 30
    • 0032878772 scopus 로고    scopus 로고
    • Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle
    • Ihlemann J, Galbo H, Ploug T. Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle. Acta Physiol Scand. 1999;167:69-75.
    • (1999) Acta Physiol Scand , vol.167 , pp. 69-75
    • Ihlemann, J.1    Galbo, H.2    Ploug, T.3
  • 31
    • 0030858852 scopus 로고    scopus 로고
    • Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways
    • Hansen PA, Corbett JA, Holloszy JO. Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways. Am J Physiol Endocrinol Metab. 1997;273:E28-E36.
    • (1997) Am J Physiol Endocrinol Metab , vol.273
    • Hansen, P.A.1    Corbett, J.A.2    Holloszy, J.O.3
  • 32
    • 0345327762 scopus 로고    scopus 로고
    • 2+-calmodulin-dependent protein kinase II activity in human skeletal muscle
    • 2+-calmodulin- dependent protein kinase II activity in human skeletal muscle. J Physiol (Lond). 2003;553:303-309.
    • (2003) J Physiol (Lond) , vol.553 , pp. 303-309
    • Rose, A.J.1    Hargreaves, M.2
  • 33
    • 24044537627 scopus 로고    scopus 로고
    • Skeletal muscle glucose uptake during exercise: How is it regulated?
    • Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: How is it regulated? Physiology. 2005;20:260-270.
    • (2005) Physiology , vol.20 , pp. 260-270
    • Rose, A.J.1    Richter, E.A.2
  • 35
    • 0037189548 scopus 로고    scopus 로고
    • Activation of the ERK pathway and atypical protein kinase C isoforms in exercise-and aminoimidazole-4-carboxamide- 1-beta -D-riboside (AICAR)-stimulated glucose transport
    • Chen HC, Bandyopadhyay G, Sajan MP, et al. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise-and aminoimidazole-4- carboxamide- 1-beta -D-riboside (AICAR)-stimulated glucose transport. J Biol Chem. 2002; 277:23554-23562.
    • (2002) J Biol Chem , vol.277 , pp. 23554-23562
    • Chen, H.C.1    Bandyopadhyay, G.2    Sajan, M.P.3
  • 36
    • 8844258021 scopus 로고    scopus 로고
    • Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle
    • Richter EA, Vistisen B, Maarbjerg SJ, et al. Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. J Physiol (Lond). 2004; 560:909-918.
    • (2004) J Physiol (Lond) , vol.560 , pp. 909-918
    • Richter, E.A.1    Vistisen, B.2    Maarbjerg, S.J.3
  • 37
    • 0035986085 scopus 로고    scopus 로고
    • Exercise effects on muscle insulin signalling and action. Invited review: Intracellular signalling in contracting skeletal muscle
    • Sakamoto K, Goodyear LJ. Exercise effects on muscle insulin signalling and action. Invited review: Intracellular signalling in contracting skeletal muscle. J Appl Physiol. 2002;93:369-383.
    • (2002) J Appl Physiol , vol.93 , pp. 369-383
    • Sakamoto, K.1    Goodyear, L.J.2
  • 38
    • 0037677096 scopus 로고    scopus 로고
    • Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
    • Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278:14599-14602.
    • (2003) J Biol Chem , vol.278 , pp. 14599-14602
    • Sano, H.1    Kane, S.2    Sano, E.3
  • 39
    • 4644300287 scopus 로고    scopus 로고
    • Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160
    • Zeigerer A, McBrayer MK, McGraw TE. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol Biol Cell. 2004;15:4406-4415.
    • (2004) Mol Biol Cell , vol.15 , pp. 4406-4415
    • Zeigerer, A.1    McBrayer, M.K.2    McGraw, T.E.3
  • 40
    • 12144271277 scopus 로고    scopus 로고
    • Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity
    • Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes. 2005;54:41-50.
    • (2005) Diabetes , vol.54 , pp. 41-50
    • Bruss, M.D.1    Arias, E.B.2    Lienhard, G.E.3
  • 41
    • 2442438710 scopus 로고    scopus 로고
    • Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects
    • Lihn AS, Bruun JM, He G, et al. Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Mol Cell Endocrinol. 2004;219:9-15.
    • (2004) Mol Cell Endocrinol , vol.219 , pp. 9-15
    • Lihn, A.S.1    Bruun, J.M.2    He, G.3
  • 42
    • 17944365228 scopus 로고    scopus 로고
    • The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
    • Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941-946.
    • (2001) Nat Med , vol.7 , pp. 941-946
    • Yamauchi, T.1    Kamon, J.2    Waki, H.3
  • 43
    • 0034999667 scopus 로고    scopus 로고
    • Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
    • Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930-1935.
    • (2001) J Clin Endocrinol Metab , vol.86 , pp. 1930-1935
    • Weyer, C.1    Funahashi, T.2    Tanaka, S.3
  • 44
    • 0347379841 scopus 로고    scopus 로고
    • Role of disulfide bonds in Acrp30/adiponectin structure and signalling specificity: Different oligomers activate different signal transduction pathways
    • Tsao T-S, Tomas E, Murrey HE, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signalling specificity: Different oligomers activate different signal transduction pathways. J Biol Chem. 2003;278:50810-50817.
    • (2003) J Biol Chem , vol.278 , pp. 50810-50817
    • Tsao, T.-S.1    Tomas, E.2    Murrey, H.E.3
  • 45
    • 0141924849 scopus 로고    scopus 로고
    • Impaired multimerization of human adiponectin mutants associated with diabetes: Molecular structure and multimer formation of adiponectin
    • Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes: molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278:40352-40363.
    • (2003) J Biol Chem , vol.278 , pp. 40352-40363
    • Waki, H.1    Yamauchi, T.2    Kamon, J.3
  • 46
    • 0036511213 scopus 로고    scopus 로고
    • ACRP30/adiponectin: An adipokine regulating glucose and lipid metabolism
    • Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002;13:84-89.
    • (2002) Trends Endocrinol Metab , vol.13 , pp. 84-89
    • Berg, A.H.1    Combs, T.P.2    Scherer, P.E.3
  • 47
    • 0034881391 scopus 로고    scopus 로고
    • The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
    • Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947-953.
    • (2001) Nat Med , vol.7 , pp. 947-953
    • Berg, A.H.1    Combs, T.P.2    Du, X.3
  • 48
    • 0035663963 scopus 로고    scopus 로고
    • Endogenous glucose production is inhibited by the adipose-derived protein Acrp30
    • Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001;108:1875-1881.
    • (2001) J Clin Invest , vol.108 , pp. 1875-1881
    • Combs, T.P.1    Berg, A.H.2    Obici, S.3
  • 49
    • 0036851817 scopus 로고    scopus 로고
    • Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase
    • Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288-1295.
    • (2002) Nat Med , vol.8 , pp. 1288-1295
    • Yamauchi, T.1    Kamon, J.2    Minokoshi, Y.3
  • 50
    • 0037059013 scopus 로고    scopus 로고
    • Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation
    • Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci. 2002;99:16309-16313.
    • (2002) Proc Natl Acad Sci , vol.99 , pp. 16309-16313
    • Tomas, E.1    Tsao, T.S.2    Saha, A.K.3
  • 51
    • 0037494960 scopus 로고    scopus 로고
    • Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
    • Yamauchi T, Kamon J, Tsuchida A, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762-769.
    • (2003) Nature , vol.423 , pp. 762-769
    • Yamauchi, T.1    Kamon, J.2    Tsuchida, A.3
  • 52
    • 12944302597 scopus 로고    scopus 로고
    • Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells
    • Ceddia RB, Somwar R, Maida A, et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48:132-139.
    • (2005) Diabetologia , vol.48 , pp. 132-139
    • Ceddia, R.B.1    Somwar, R.2    Maida, A.3
  • 53
    • 0028947991 scopus 로고
    • The effects of wortmannin on rat skeletal muscle. Dissociation of signalling pathways for insulin- and contraction-activated hexose transport
    • Yeh JI, Gulve EA, Rameh L, et al. The effects of wortmannin on rat skeletal muscle. Dissociation of signalling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995;270:2107-2111.
    • (1995) J Biol Chem , vol.270 , pp. 2107-2111
    • Yeh, J.I.1    Gulve, E.A.2    Rameh, L.3
  • 54
    • 0032510947 scopus 로고    scopus 로고
    • Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle
    • Brozinick Jr JT, Birnbaum MJ. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J Biol Chem. 1998;273:14679-14682.
    • (1998) J Biol Chem , vol.273 , pp. 14679-14682
    • Brozinick Jr., J.T.1    Birnbaum, M.J.2
  • 55
    • 0029064123 scopus 로고
    • Contraction stimulates translocation of glucose transporter GLUT 4 in skeletal muscle through a mechanism distinct from that of insulin
    • Lund S, Holman GD, Schmitz O, et al. Contraction stimulates translocation of glucose transporter GLUT 4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci. 1995;92:5817-5821.
    • (1995) Proc Natl Acad Sci , vol.92 , pp. 5817-5821
    • Lund, S.1    Holman, G.D.2    Schmitz, O.3
  • 56
    • 18344412992 scopus 로고    scopus 로고
    • Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle
    • Lund S, Pryor PR, Ostergaard S, et al. Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle. FEBS Lett. 1998;425:472-474.
    • (1998) FEBS Lett , vol.425 , pp. 472-474
    • Lund, S.1    Pryor, P.R.2    Ostergaard, S.3
  • 57
    • 0034999425 scopus 로고    scopus 로고
    • AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle
    • Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2001;280:E677-E684.
    • (2001) Am J Physiol Endocrinol Metab , vol.280
    • Musi, N.1    Hayashi, T.2    Fujii, N.3
  • 58
    • 4544312946 scopus 로고    scopus 로고
    • Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats
    • Wheatley CM, Rattigan S, Richards SM, et al. Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab. 2004;287:E804-E809.
    • (2004) Am J Physiol Endocrinol Metab , vol.287
    • Wheatley, C.M.1    Rattigan, S.2    Richards, S.M.3
  • 59
    • 0032891637 scopus 로고    scopus 로고
    • Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: Study with insulin and exercise
    • Turinsky J, Damrau-Abney A. Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: Study with insulin and exercise. Am J Physiol Regul Integr Comp Physiol. 1999;276: R277-R282.
    • (1999) Am J Physiol Regul Integr Comp Physiol , vol.276
    • Turinsky, J.1    Damrau-Abney, A.2
  • 60
    • 0033558127 scopus 로고    scopus 로고
    • Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle
    • Derave W, Hespel P. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. J Physiol. 1999;515:255-263.
    • (1999) J Physiol , vol.515 , pp. 255-263
    • Derave, W.1    Hespel, P.2
  • 61
    • 0032496283 scopus 로고    scopus 로고
    • Hypoxia and contractions do not utilize the same signalling mechanism in stimulating skeletal muscle glucose transport
    • Wojtaszewski JFP, Lausten JL, Derave W, et al. Hypoxia and contractions do not utilize the same signalling mechanism in stimulating skeletal muscle glucose transport. Biochim Biophys Acta. 1998;1380:396-404.
    • (1998) Biochim Biophys Acta , vol.1380 , pp. 396-404
    • Wojtaszewski, J.F.P.1    Lausten, J.L.2    Derave, W.3
  • 62
    • 0024586612 scopus 로고
    • Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle
    • Douen AG, Ramlal T, Klip A, et al. Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology. 1989;124:449-454.
    • (1989) Endocrinology , vol.124 , pp. 449-454
    • Douen, A.G.1    Ramlal, T.2    Klip, A.3
  • 63
    • 0028126690 scopus 로고
    • Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle
    • Youn JH, Gulve EA, Henriksen EJ, et al. Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle. Am J Physiol. 1994;267(4 Pt 2):R888-R894.
    • (1994) Am J Physiol , vol.267 , Issue.4 PART 2
    • Youn, J.H.1    Gulve, E.A.2    Henriksen, E.J.3
  • 64
    • 10744221245 scopus 로고    scopus 로고
    • Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues
    • Rudich A, Konrad D, Torok D, et al. Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia. 2003;46:649-658.
    • (2003) Diabetologia , vol.46 , pp. 649-658
    • Rudich, A.1    Konrad, D.2    Torok, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.