-
1
-
-
10344236432
-
Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes
-
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev. 2004;25:177-204.
-
(2004)
Endocr Rev
, vol.25
, pp. 177-204
-
-
Watson, R.T.1
Kanzaki, M.2
Pessin, J.E.3
-
2
-
-
24044468429
-
Turning signals on and off: GLUT4 traffic in the insulin-signalling highway
-
Thong FS, Dugani CB, Klip A. Turning signals on and off: GLUT4 traffic in the insulin-signalling highway. Physiology. 2005;20:271-284.
-
(2005)
Physiology
, vol.20
, pp. 271-284
-
-
Thong, F.S.1
Dugani, C.B.2
Klip, A.3
-
3
-
-
33646707285
-
Tackling the insulin-signalling cascade
-
Glund S, Zierath JR. Tackling the insulin-signalling cascade. Can J Diabetes. 2005;29:239-245.
-
(2005)
Can J Diabetes
, vol.29
, pp. 239-245
-
-
Glund, S.1
Zierath, J.R.2
-
5
-
-
0029072564
-
Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: Comparison with insulin action
-
Tsakiridis T, Vranic M, Klip A. Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: comparison with insulin action. Biochem J. 1995;309:1-5.
-
(1995)
Biochem J
, vol.309
, pp. 1-5
-
-
Tsakiridis, T.1
Vranic, M.2
Klip, A.3
-
6
-
-
0029978799
-
Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise
-
Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol Endocrinol Metab. 1996;270: E299-E304.
-
(1996)
Am J Physiol Endocrinol Metab
, vol.270
-
-
Winder, W.W.1
Hardie, D.G.2
-
7
-
-
0031009673
-
Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle
-
Vavvas D, Apazidis A, Saha AK, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997;272:13255-13261.
-
(1997)
J Biol Chem
, vol.272
, pp. 13255-13261
-
-
Vavvas, D.1
Apazidis, A.2
Saha, A.K.3
-
8
-
-
0031849916
-
Evidence for 5′-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport
-
Hayashi T, Hirshman MF, Kurth EJ, et al. Evidence for 5′-AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998;47:1369-1373.
-
(1998)
Diabetes
, vol.47
, pp. 1369-1373
-
-
Hayashi, T.1
Hirshman, M.F.2
Kurth, E.J.3
-
11
-
-
0034070567
-
Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism
-
Hayashi T, Hirschman MF, Fujii N, et al. Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 2000; 49:527-531.
-
(2000)
Diabetes
, vol.49
, pp. 527-531
-
-
Hayashi, T.1
Hirschman, M.F.2
Fujii, N.3
-
12
-
-
0033855903
-
Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle
-
Derave W, Ai H, Ihlemann J, et al. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes. 2000;49:1281-1287.
-
(2000)
Diabetes
, vol.49
, pp. 1281-1287
-
-
Derave, W.1
Ai, H.2
Ihlemann, J.3
-
13
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle
-
Mu J, Brozinick JT Jr, Valladares O, et al. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001;7:1085-1094.
-
(2001)
Mol Cell
, vol.7
, pp. 1085-1094
-
-
Mu, J.1
Brozinick Jr., J.T.2
Valladares, O.3
-
14
-
-
0037326943
-
Selective suppression of AMP-activated protein kinase in skeletal muscle: Update on 'lazy mice'
-
Mu J, Barton ER, Birnbaum MJ. Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice'. Biochem Soc Trans. 2003;31:236-241.
-
(2003)
Biochem Soc Trans
, vol.31
, pp. 236-241
-
-
Mu, J.1
Barton, E.R.2
Birnbaum, M.J.3
-
15
-
-
0345832116
-
Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4- ribofuranoside but not contraction-induced glucose uptake in skeletal muscle
-
Jorgensen SB, Viollet B, Andreelli F, et al. Knockout of the α2 but not α1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem. 2004;279:1070-1079.
-
(2004)
J Biol Chem
, vol.279
, pp. 1070-1079
-
-
Jorgensen, S.B.1
Viollet, B.2
Andreelli, F.3
-
16
-
-
4644309036
-
The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle
-
Barnes BR, Marklund S, Steiler TL, et al. The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem. 2004;279:38441-38447.
-
(2004)
J Biol Chem
, vol.279
, pp. 38441-38447
-
-
Barnes, B.R.1
Marklund, S.2
Steiler, T.L.3
-
19
-
-
0025825770
-
Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction
-
Youn JH, Gulve EA, Holloszy JO. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am J Physiol Cell Physiol. 1991;260:C555-C561.
-
(1991)
Am J Physiol Cell Physiol
, vol.260
-
-
Youn, J.H.1
Gulve, E.A.2
Holloszy, J.O.3
-
20
-
-
0038070931
-
+ pump regulation and skeletal muscle contractility
-
+ pump regulation and skeletal muscle contractility. Physiol Rev. 2003;83:1269-1324.
-
(2003)
Physiol Rev
, vol.83
, pp. 1269-1324
-
-
Clausen, T.1
-
21
-
-
0025904870
-
Stimulation of glucose transport in skeletal muscle by hypoxia
-
Cartee GD, Douen AG, Ramlal T, et al. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol. 1991; 70:1593-1600.
-
(1991)
J Appl Physiol
, vol.70
, pp. 1593-1600
-
-
Cartee, G.D.1
Douen, A.G.2
Ramlal, T.3
-
22
-
-
0842288475
-
Ca(2+) and AMPK both mediate stimulation of glucose transport by muscle contractions
-
Wright DC, Hucker KA, Holloszy JO, et al. Ca(2+) and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes. 2004;53:330-335.
-
(2004)
Diabetes
, vol.53
, pp. 330-335
-
-
Wright, D.C.1
Hucker, K.A.2
Holloszy, J.O.3
-
23
-
-
0029077455
-
Effects of insulin on the translocation of protein kinase C-theta and other protein kinase C isoforms in rat skeletal muscles
-
Yamada K, Avignon A, Standaert ML, et al. Effects of insulin on the translocation of protein kinase C-theta and other protein kinase C isoforms in rat skeletal muscles. Biochem J. 1995; 308:177-180.
-
(1995)
Biochem J
, vol.308
, pp. 177-180
-
-
Yamada, K.1
Avignon, A.2
Standaert, M.L.3
-
24
-
-
11344280545
-
Effect of exercise on protein kinase C activity and localisation in human skeletal muscle
-
Rose AJ, Michell BJ, Kemp BE, et al. Effect of exercise on protein kinase C activity and localisation in human skeletal muscle. J Physiol (Lond). 2004;561:861-870.
-
(2004)
J Physiol (Lond)
, vol.561
, pp. 861-870
-
-
Rose, A.J.1
Michell, B.J.2
Kemp, B.E.3
-
25
-
-
0028931623
-
The phorbol ester TPA markedly enhances the binding of calcium to the regulatory domain of protein kinase C beta 1 in the presence of phosphatidylserine
-
Luo JH, Xing WQ, Weinstein IB. The phorbol ester TPA markedly enhances the binding of calcium to the regulatory domain of protein kinase C beta 1 in the presence of phosphatidylserine. Carcinogenesis. 1995;16:897-905.
-
(1995)
Carcinogenesis
, vol.16
, pp. 897-905
-
-
Luo, J.H.1
Xing, W.Q.2
Weinstein, I.B.3
-
26
-
-
0024434397
-
Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport
-
Cleland PJ, Appleby GJ, Rattigan S, et al. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J Biol Chem. 1989;264:17704-17711.
-
(1989)
J Biol Chem
, vol.264
, pp. 17704-17711
-
-
Cleland, P.J.1
Appleby, G.J.2
Rattigan, S.3
-
27
-
-
0025317854
-
1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin
-
Turinsky J, Bayly BP, O'Sullivan DM. 1,2-diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem. 1990;265:7933-7938.
-
(1990)
J Biol Chem
, vol.265
, pp. 7933-7938
-
-
Turinsky, J.1
Bayly, B.P.2
O'Sullivan, D.M.3
-
28
-
-
0023278215
-
Contraction-associated translocation of protein kinase C in rat skeletal muscle
-
Richter EA, Cleland PJ, Rattigan S, et al. Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett. 1987;217:232-236.
-
(1987)
FEBS Lett
, vol.217
, pp. 232-236
-
-
Richter, E.A.1
Cleland, P.J.2
Rattigan, S.3
-
29
-
-
0029019655
-
Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain
-
Hong DH, Huan J, Ou BR, et al. Protein kinase C isoforms in muscle cells and their regulation by phorbol ester and calpain. Biochim Biophys Acta. 1995;1267:45-54.
-
(1995)
Biochim Biophys Acta
, vol.1267
, pp. 45-54
-
-
Hong, D.H.1
Huan, J.2
Ou, B.R.3
-
30
-
-
0032878772
-
Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle
-
Ihlemann J, Galbo H, Ploug T. Calphostin C is an inhibitor of contraction, but not insulin-stimulated glucose transport, in skeletal muscle. Acta Physiol Scand. 1999;167:69-75.
-
(1999)
Acta Physiol Scand
, vol.167
, pp. 69-75
-
-
Ihlemann, J.1
Galbo, H.2
Ploug, T.3
-
31
-
-
0030858852
-
Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways
-
Hansen PA, Corbett JA, Holloszy JO. Phorbol esters stimulate muscle glucose transport by a mechanism distinct from the insulin and hypoxia pathways. Am J Physiol Endocrinol Metab. 1997;273:E28-E36.
-
(1997)
Am J Physiol Endocrinol Metab
, vol.273
-
-
Hansen, P.A.1
Corbett, J.A.2
Holloszy, J.O.3
-
32
-
-
0345327762
-
2+-calmodulin-dependent protein kinase II activity in human skeletal muscle
-
2+-calmodulin- dependent protein kinase II activity in human skeletal muscle. J Physiol (Lond). 2003;553:303-309.
-
(2003)
J Physiol (Lond)
, vol.553
, pp. 303-309
-
-
Rose, A.J.1
Hargreaves, M.2
-
33
-
-
24044537627
-
Skeletal muscle glucose uptake during exercise: How is it regulated?
-
Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: How is it regulated? Physiology. 2005;20:260-270.
-
(2005)
Physiology
, vol.20
, pp. 260-270
-
-
Rose, A.J.1
Richter, E.A.2
-
35
-
-
0037189548
-
Activation of the ERK pathway and atypical protein kinase C isoforms in exercise-and aminoimidazole-4-carboxamide- 1-beta -D-riboside (AICAR)-stimulated glucose transport
-
Chen HC, Bandyopadhyay G, Sajan MP, et al. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise-and aminoimidazole-4- carboxamide- 1-beta -D-riboside (AICAR)-stimulated glucose transport. J Biol Chem. 2002; 277:23554-23562.
-
(2002)
J Biol Chem
, vol.277
, pp. 23554-23562
-
-
Chen, H.C.1
Bandyopadhyay, G.2
Sajan, M.P.3
-
36
-
-
8844258021
-
Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle
-
Richter EA, Vistisen B, Maarbjerg SJ, et al. Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. J Physiol (Lond). 2004; 560:909-918.
-
(2004)
J Physiol (Lond)
, vol.560
, pp. 909-918
-
-
Richter, E.A.1
Vistisen, B.2
Maarbjerg, S.J.3
-
37
-
-
0035986085
-
Exercise effects on muscle insulin signalling and action. Invited review: Intracellular signalling in contracting skeletal muscle
-
Sakamoto K, Goodyear LJ. Exercise effects on muscle insulin signalling and action. Invited review: Intracellular signalling in contracting skeletal muscle. J Appl Physiol. 2002;93:369-383.
-
(2002)
J Appl Physiol
, vol.93
, pp. 369-383
-
-
Sakamoto, K.1
Goodyear, L.J.2
-
38
-
-
0037677096
-
Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
-
Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278:14599-14602.
-
(2003)
J Biol Chem
, vol.278
, pp. 14599-14602
-
-
Sano, H.1
Kane, S.2
Sano, E.3
-
39
-
-
4644300287
-
Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160
-
Zeigerer A, McBrayer MK, McGraw TE. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol Biol Cell. 2004;15:4406-4415.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 4406-4415
-
-
Zeigerer, A.1
McBrayer, M.K.2
McGraw, T.E.3
-
40
-
-
12144271277
-
Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity
-
Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes. 2005;54:41-50.
-
(2005)
Diabetes
, vol.54
, pp. 41-50
-
-
Bruss, M.D.1
Arias, E.B.2
Lienhard, G.E.3
-
41
-
-
2442438710
-
Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects
-
Lihn AS, Bruun JM, He G, et al. Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Mol Cell Endocrinol. 2004;219:9-15.
-
(2004)
Mol Cell Endocrinol
, vol.219
, pp. 9-15
-
-
Lihn, A.S.1
Bruun, J.M.2
He, G.3
-
42
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941-946.
-
(2001)
Nat Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
-
43
-
-
0034999667
-
Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia
-
Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930-1935.
-
(2001)
J Clin Endocrinol Metab
, vol.86
, pp. 1930-1935
-
-
Weyer, C.1
Funahashi, T.2
Tanaka, S.3
-
44
-
-
0347379841
-
Role of disulfide bonds in Acrp30/adiponectin structure and signalling specificity: Different oligomers activate different signal transduction pathways
-
Tsao T-S, Tomas E, Murrey HE, et al. Role of disulfide bonds in Acrp30/adiponectin structure and signalling specificity: Different oligomers activate different signal transduction pathways. J Biol Chem. 2003;278:50810-50817.
-
(2003)
J Biol Chem
, vol.278
, pp. 50810-50817
-
-
Tsao, T.-S.1
Tomas, E.2
Murrey, H.E.3
-
45
-
-
0141924849
-
Impaired multimerization of human adiponectin mutants associated with diabetes: Molecular structure and multimer formation of adiponectin
-
Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes: molecular structure and multimer formation of adiponectin. J Biol Chem. 2003;278:40352-40363.
-
(2003)
J Biol Chem
, vol.278
, pp. 40352-40363
-
-
Waki, H.1
Yamauchi, T.2
Kamon, J.3
-
46
-
-
0036511213
-
ACRP30/adiponectin: An adipokine regulating glucose and lipid metabolism
-
Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002;13:84-89.
-
(2002)
Trends Endocrinol Metab
, vol.13
, pp. 84-89
-
-
Berg, A.H.1
Combs, T.P.2
Scherer, P.E.3
-
47
-
-
0034881391
-
The adipocyte-secreted protein Acrp30 enhances hepatic insulin action
-
Berg AH, Combs TP, Du X, et al. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947-953.
-
(2001)
Nat Med
, vol.7
, pp. 947-953
-
-
Berg, A.H.1
Combs, T.P.2
Du, X.3
-
48
-
-
0035663963
-
Endogenous glucose production is inhibited by the adipose-derived protein Acrp30
-
Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001;108:1875-1881.
-
(2001)
J Clin Invest
, vol.108
, pp. 1875-1881
-
-
Combs, T.P.1
Berg, A.H.2
Obici, S.3
-
49
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288-1295.
-
(2002)
Nat Med
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
-
50
-
-
0037059013
-
Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation
-
Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci. 2002;99:16309-16313.
-
(2002)
Proc Natl Acad Sci
, vol.99
, pp. 16309-16313
-
-
Tomas, E.1
Tsao, T.S.2
Saha, A.K.3
-
51
-
-
0037494960
-
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects
-
Yamauchi T, Kamon J, Tsuchida A, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762-769.
-
(2003)
Nature
, vol.423
, pp. 762-769
-
-
Yamauchi, T.1
Kamon, J.2
Tsuchida, A.3
-
52
-
-
12944302597
-
Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells
-
Ceddia RB, Somwar R, Maida A, et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48:132-139.
-
(2005)
Diabetologia
, vol.48
, pp. 132-139
-
-
Ceddia, R.B.1
Somwar, R.2
Maida, A.3
-
53
-
-
0028947991
-
The effects of wortmannin on rat skeletal muscle. Dissociation of signalling pathways for insulin- and contraction-activated hexose transport
-
Yeh JI, Gulve EA, Rameh L, et al. The effects of wortmannin on rat skeletal muscle. Dissociation of signalling pathways for insulin- and contraction-activated hexose transport. J Biol Chem. 1995;270:2107-2111.
-
(1995)
J Biol Chem
, vol.270
, pp. 2107-2111
-
-
Yeh, J.I.1
Gulve, E.A.2
Rameh, L.3
-
54
-
-
0032510947
-
Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle
-
Brozinick Jr JT, Birnbaum MJ. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J Biol Chem. 1998;273:14679-14682.
-
(1998)
J Biol Chem
, vol.273
, pp. 14679-14682
-
-
Brozinick Jr., J.T.1
Birnbaum, M.J.2
-
55
-
-
0029064123
-
Contraction stimulates translocation of glucose transporter GLUT 4 in skeletal muscle through a mechanism distinct from that of insulin
-
Lund S, Holman GD, Schmitz O, et al. Contraction stimulates translocation of glucose transporter GLUT 4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci. 1995;92:5817-5821.
-
(1995)
Proc Natl Acad Sci
, vol.92
, pp. 5817-5821
-
-
Lund, S.1
Holman, G.D.2
Schmitz, O.3
-
56
-
-
18344412992
-
Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle
-
Lund S, Pryor PR, Ostergaard S, et al. Evidence against protein kinase B as a mediator of contraction-induced glucose transport and GLUT4 translocation in rat skeletal muscle. FEBS Lett. 1998;425:472-474.
-
(1998)
FEBS Lett
, vol.425
, pp. 472-474
-
-
Lund, S.1
Pryor, P.R.2
Ostergaard, S.3
-
57
-
-
0034999425
-
AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle
-
Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2001;280:E677-E684.
-
(2001)
Am J Physiol Endocrinol Metab
, vol.280
-
-
Musi, N.1
Hayashi, T.2
Fujii, N.3
-
58
-
-
4544312946
-
Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats
-
Wheatley CM, Rattigan S, Richards SM, et al. Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab. 2004;287:E804-E809.
-
(2004)
Am J Physiol Endocrinol Metab
, vol.287
-
-
Wheatley, C.M.1
Rattigan, S.2
Richards, S.M.3
-
59
-
-
0032891637
-
Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: Study with insulin and exercise
-
Turinsky J, Damrau-Abney A. Akt kinases and 2-deoxyglucose uptake in rat skeletal muscles in vivo: Study with insulin and exercise. Am J Physiol Regul Integr Comp Physiol. 1999;276: R277-R282.
-
(1999)
Am J Physiol Regul Integr Comp Physiol
, vol.276
-
-
Turinsky, J.1
Damrau-Abney, A.2
-
60
-
-
0033558127
-
Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle
-
Derave W, Hespel P. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. J Physiol. 1999;515:255-263.
-
(1999)
J Physiol
, vol.515
, pp. 255-263
-
-
Derave, W.1
Hespel, P.2
-
61
-
-
0032496283
-
Hypoxia and contractions do not utilize the same signalling mechanism in stimulating skeletal muscle glucose transport
-
Wojtaszewski JFP, Lausten JL, Derave W, et al. Hypoxia and contractions do not utilize the same signalling mechanism in stimulating skeletal muscle glucose transport. Biochim Biophys Acta. 1998;1380:396-404.
-
(1998)
Biochim Biophys Acta
, vol.1380
, pp. 396-404
-
-
Wojtaszewski, J.F.P.1
Lausten, J.L.2
Derave, W.3
-
62
-
-
0024586612
-
Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle
-
Douen AG, Ramlal T, Klip A, et al. Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology. 1989;124:449-454.
-
(1989)
Endocrinology
, vol.124
, pp. 449-454
-
-
Douen, A.G.1
Ramlal, T.2
Klip, A.3
-
63
-
-
0028126690
-
Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle
-
Youn JH, Gulve EA, Henriksen EJ, et al. Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle. Am J Physiol. 1994;267(4 Pt 2):R888-R894.
-
(1994)
Am J Physiol
, vol.267
, Issue.4 PART 2
-
-
Youn, J.H.1
Gulve, E.A.2
Henriksen, E.J.3
-
64
-
-
10744221245
-
Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues
-
Rudich A, Konrad D, Torok D, et al. Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia. 2003;46:649-658.
-
(2003)
Diabetologia
, vol.46
, pp. 649-658
-
-
Rudich, A.1
Konrad, D.2
Torok, D.3
|