메뉴 건너뛰기




Volumn 1, Issue , 2005, Pages 196-201

A study of AdaBoost with SVM based weak learners

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; LEARNING ALGORITHMS; MATHEMATICAL MODELS; PERFORMANCE; PROBLEM SOLVING;

EID: 33745937896     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2005.1555829     Document Type: Conference Paper
Times cited : (71)

References (20)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Leo Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Jul
    • Eric Bauer and Ron Kohavi, "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants," Machine Learning, vol. 36, no. 1, pp. 105-139, Jul 1999.
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • August
    • Yoav Freund and Robert E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences, vol. 55(1), pp. 119-139, August 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 5
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Singer, P. Bartlett, and W. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," The Annals of Statistics, vol. 26, no. 5, pp. 1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Singer, Y.2    Bartlett, P.3    Lee, W.4
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Aug
    • Thomas G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization," Machine Learning, vol. 40, no. 2, pp. 139-157, Aug 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • Holger Schwenk and Yoshua Bengio, "Boosting neural networks," Nueral Computation, vol. 12, pp. 1869-1887, 2000.
    • (2000) Nueral Computation , vol.12 , pp. 1869-1887
    • Schwenk, H.1    Bengio, Y.2
  • 8
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for adaboost
    • Mar
    • Gunnar Ratsch, "Soft margins for adaboost," Machine Learning, vol. 42, no. 3, pp. 287-320, Mar 2001.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1
  • 9
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Mar
    • Prem Melville and Raymond J. Mooney, "Creating diversity in ensembles using artificial data," Information Fusion, vol. 6, no. 1, pp. 99-111, Mar 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 10
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • May
    • Ludmila I. Kuncheva and Christopher J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Machine Learning, vol. 51, no. 2, pp. 181-207, May 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 11
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for adaboost
    • Wenxin Jiang. "Process consistency for adaboost," Annals of Statistics, vol. 32, no. 1, pp. 13-29, 2004.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 13-29
    • Jiang, W.1
  • 14
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of svm-based ensemble methods
    • Jul
    • Giorgio Valentini and Thomas G. Dietterich, "Bias-variance analysis of support vector machines for the development of svm-based ensemble methods," Journal of Machine Learning Research, vol. 5, pp. 725-775, Jul 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 725-775
    • Valentini, G.1    Dietterich, T.G.2
  • 15
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Dec
    • Robert E. Schapire and Yoram Singer, "Improved boosting algorithms using confidence-rated predictions," Machine Learning, vol. 37, no. 3, pp. 297-336, Dec 1999.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 16
    • 6444238786 scopus 로고    scopus 로고
    • Selected tree classifier combination based on both accuracy and error diversity
    • H.W.Shin and S.Y.Sohn, "Selected tree classifier combination based on both accuracy and error diversity," Pattern Recognition, vol. 38, pp. 191-197, 2005.
    • (2005) Pattern Recognition , vol.38 , pp. 191-197
    • Shin, H.W.1    Sohn, S.Y.2
  • 18
    • 33745949069 scopus 로고    scopus 로고
    • http://mlg.anu.edu.au/~raetsch/data.
  • 20
    • 0142025124 scopus 로고    scopus 로고
    • Constructing support vector machine ensemble
    • Dec
    • Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and Sung Yang Bang, "Constructing support vector machine ensemble," Pattern Recognition, vol. 36, no. 12, pp. 2757-2767, Dec 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2757-2767
    • Kim, H.-C.1    Pang, S.2    Je, H.-M.3    Kim, D.4    Bang, S.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.