-
1
-
-
0037418379
-
-
Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353.
-
(2003)
Adv. Mater.
, vol.15
, pp. 353
-
-
Xia, Y.N.1
Yang, P.D.2
Sun, Y.G.3
Wu, Y.Y.4
Mayers, B.5
Gates, B.6
Yin, Y.D.7
Kim, F.8
Yan, Y.Q.9
-
3
-
-
0035943358
-
-
Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Science 2001, 293, 1455.
-
(2001)
Science
, vol.293
, pp. 1455
-
-
Wang, J.F.1
Gudiksen, M.S.2
Duan, X.F.3
Cui, Y.4
Lieber, C.M.5
-
4
-
-
0035827304
-
-
Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897.
-
(2001)
Science
, vol.292
, pp. 1897
-
-
Huang, M.H.1
Mao, S.2
Feick, H.3
Yan, H.Q.4
Wu, Y.Y.5
Kind, H.6
Weber, E.7
Russo, R.8
Yang, P.D.9
-
6
-
-
28344456271
-
-
Gradecak, S.; Qian, F.; Li, Y.; Park, H. G.; Lieber, C. M. Appl. Phys. Lett. 2005, 87, 173111.
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 173111
-
-
Gradecak, S.1
Qian, F.2
Li, Y.3
Park, H.G.4
Lieber, C.M.5
-
8
-
-
22544473589
-
-
Lu, W.; Xiang, J.; Timko, B. P.; Wu, Y.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10046.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 10046
-
-
Lu, W.1
Xiang, J.2
Timko, B.P.3
Wu, Y.4
Lieber, C.M.5
-
10
-
-
0005836651
-
-
Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Appl. Phys. Lett. 1998, 73, 2447.
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2447
-
-
Martel, R.1
Schmidt, T.2
Shea, H.R.3
Hertel, T.4
Avouris, P.5
-
11
-
-
0142055973
-
-
Wang, D. W.; Wang, Q.; Javey, A.; Tu, R.; Dai, H. J.; Kim, H.; McIntyre, P. C.; Krishnamohan, T.; Saraswat, K. C. Appl. Phys. Lett. 2003, 83, 2432.
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 2432
-
-
Wang, D.W.1
Wang, Q.2
Javey, A.3
Tu, R.4
Dai, H.J.5
Kim, H.6
McIntyre, P.C.7
Krishnamohan, T.8
Saraswat, K.C.9
-
12
-
-
10444271035
-
-
Zheng, G. F.; Lu, W.; Jin, S.; Lieber, C. M. Adv. Mater. 2004, 16, 1890.
-
(2004)
Adv. Mater.
, vol.16
, pp. 1890
-
-
Zheng, G.F.1
Lu, W.2
Jin, S.3
Lieber, C.M.4
-
13
-
-
0035251391
-
-
Caputo, D.; de Cesare, G.; Tucci, M. Sens. Actuators, A 2001, 88, 139.
-
(2001)
Sens. Actuators, A
, vol.88
, pp. 139
-
-
Caputo, D.1
De Cesare, G.2
Tucci, M.3
-
15
-
-
0001080831
-
-
Beck, N.; Wyrsch, N.; Hof, C.; Shah, A. J. Appl. Phys. 1996, 79, 9361.
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 9361
-
-
Beck, N.1
Wyrsch, N.2
Hof, C.3
Shah, A.4
-
16
-
-
23144434345
-
-
Ahn, Y.; Dunning, J.; Park, J. Nano Lett. 2005, 5, 1367.
-
(2005)
Nano Lett.
, vol.5
, pp. 1367
-
-
Ahn, Y.1
Dunning, J.2
Park, J.3
-
17
-
-
16244369081
-
-
Balasubramanian, K.; Burghard, M.; Kern, K.; Scolari, M.; Mews, A. Nano Lett. 2005, 5, 507.
-
(2005)
Nano Lett.
, vol.5
, pp. 507
-
-
Balasubramanian, K.1
Burghard, M.2
Kern, K.3
Scolari, M.4
Mews, A.5
-
18
-
-
2142695812
-
-
Balasubramanian, K.; Fan, Y. W.; Burghard, M.; Kern, K.; Friedrich, M.; Wannek, U.; Mews, A. Appl. Phys. Lett. 2004, 84, 2400.
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 2400
-
-
Balasubramanian, K.1
Fan, Y.W.2
Burghard, M.3
Kern, K.4
Friedrich, M.5
Wannek, U.6
Mews, A.7
-
19
-
-
23744464344
-
-
Gu, Y.; Kwak, E. S.; Lensch, J. L.; Allen, J. E.; Odom, T. W.; Lauhon, L. J. Appl. Phys. Lett. 2005, 87, 043111.
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 043111
-
-
Gu, Y.1
Kwak, E.S.2
Lensch, J.L.3
Allen, J.E.4
Odom, T.W.5
Lauhon, L.J.6
-
20
-
-
33744792612
-
-
Kroger, F. A.; Diemer, G.; Klasens, H. A. Phys. Rev. 1956, 103, 279.
-
(1956)
Phys. Rev.
, vol.103
, pp. 279
-
-
Kroger, F.A.1
Diemer, G.2
Klasens, H.A.3
-
23
-
-
33744801665
-
-
note
-
The resistivities of ion bombarded nanowires, in contrast, were typically 0.1-1 Ω·cm and n-type as determined by the gate response.
-
-
-
-
24
-
-
33744780415
-
-
note
-
For injection points away from the maximum, initially unequal currents produce charge accumulation that brings the entire device into equilibrium. Note that the present analysis for resistive material is very different from that of minority carrier photoconduction at low injection. In the present case, the excess carrier concentration is much larger than the equilibrium electron concentration, leading to pure hole and electron currents at respective electrodes. In the minority carrier low injection limit, carriers do not need to reach the electrodes to contribute to the photoconductivity.
-
-
-
-
25
-
-
33744782033
-
-
note
-
Another possibility is that the change in the band bending (and thus potential barriers) adjacent to the contacts might increasingly hinder the collection of holes with increasing bias. However, the linear current-voltage characteristics under uniform illumination suggest that the contact effects are negligible in the carrier collection process.
-
-
-
-
26
-
-
33744814600
-
-
note
-
Velocity saturation is also excluded because photocurrent versus voltage curves do not saturate.
-
-
-
-
27
-
-
33744829725
-
-
note
-
For pure drift, the corresponding length would be L = μετ, where ε is the electric field.
-
-
-
-
29
-
-
33744819425
-
-
note
-
The photogenerated carriers in the devices we measured do not move as far because the carrier transport is dominated by diffusion, not drift, outside the generation region. For devices under uniform illumination, both drift and diffusion will occur throughout the device.
-
-
-
-
30
-
-
33744790862
-
-
Weber, C.; Becker, U.; Renner, R.; Klingshim, C. Z. Phys. B: Condens. Matter 1988, 72, 379.
-
(1988)
Z. Phys. B: Condens. Matter
, vol.72
, pp. 379
-
-
Weber, C.1
Becker, U.2
Renner, R.3
Klingshim, C.4
-
32
-
-
33744814892
-
-
note
-
For comparison, typical radiative lifetimes in bulk CdS are from 1.4 ns (ref 30) to 4 ns (ref 31). Near band-edge luminescence was studied with femtosecond laser excitation and detected with a fast micro-channel plate phototube.
-
-
-
-
33
-
-
33744824887
-
-
note
-
The diffusion length depends on the recombination rate, which can be influenced by the bias, however.
-
-
-
-
34
-
-
33744807967
-
-
note
-
It is important to note that, in contrast to carbon nanotude devices studied with SPCM, we are asserting that the depletion region lies underneath the contact and does not extend significantly into the nanowire for the bias ranges studied.
-
-
-
-
35
-
-
33744810296
-
-
note
-
This diffusion length is consistent with the spatial profile of the photocurrent from the NSPM study on Schottky devices in ref 19. Using the higher resolution of NSPM compared to SPCM with a confocal microscope, we determine a minority carrier diffusion length of ∼110 nm.
-
-
-
-
36
-
-
0037116538
-
-
Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Adv. Mater. 2002, 14, 158.
-
(2002)
Adv. Mater.
, vol.14
, pp. 158
-
-
Kind, H.1
Yan, H.Q.2
Messer, B.3
Law, M.4
Yang, P.D.5
-
37
-
-
33644500750
-
-
Hsu, C. L.; Chang, S. J.; Lin, Y. R.; Li, P. C.; Lin, T. S.; Tsai, S. Y.; Lu, T. H.; Chen, I. C. Chem. Phys. Lett. 2005, 416, 75.
-
(2005)
Chem. Phys. Lett.
, vol.416
, pp. 75
-
-
Hsu, C.L.1
Chang, S.J.2
Lin, Y.R.3
Li, P.C.4
Lin, T.S.5
Tsai, S.Y.6
Lu, T.H.7
Chen, I.C.8
-
39
-
-
17944370584
-
-
Kang, Y. M.; Park, N. G.; Kim, D. Appl. Phys. Lett. 2005, 86, 113101.
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 113101
-
-
Kang, Y.M.1
Park, N.G.2
Kim, D.3
-
40
-
-
20144369634
-
-
Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4, 455.
-
(2005)
Nat. Mater.
, vol.4
, pp. 455
-
-
Law, M.1
Greene, L.E.2
Johnson, J.C.3
Saykally, R.4
Yang, P.D.5
|