메뉴 건너뛰기




Volumn 157, Issue 8, 2006, Pages 1092-1113

On support vector regression machines with linguistic interpretation of the kernel matrix

Author keywords

Fuzzy system; Generalization ability; Kernel matrix; Support vector machine

Indexed keywords

APPROXIMATION THEORY; FUZZY SETS; MATHEMATICAL MODELS; MATRIX ALGEBRA; VECTORS;

EID: 33644990689     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2005.09.012     Document Type: Article
Times cited : (28)

References (42)
  • 1
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • S. Amari, and S. Wu Improving support vector machine classifiers by modifying kernel functions Neural Networks 12 1999 783 789
    • (1999) Neural Networks , vol.12 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 3
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat, and F. Anouar Generalized discriminant analysis using a kernel approach Neural Comput. 12 10 2000 2385 2404
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 9
    • 0038198693 scopus 로고    scopus 로고
    • Kernel machines and additive fuzzy systems: Classification and function approximation
    • St. Louis, MO
    • Y. Chen, J.Z. Wang, Kernel machines and additive fuzzy systems: classification and function approximation, in: Proc. IEEE Internat. Conf. on Fuzzy Systems, St. Louis, MO, 2003, pp.789-795.
    • (2003) Proc. IEEE Internat. Conf. on Fuzzy Systems , pp. 789-795
    • Chen, Y.1    Wang, J.Z.2
  • 10
    • 0346076782 scopus 로고    scopus 로고
    • Support vector learning for fuzzy rule-based classification systems
    • Y. Chen, and J.Z. Wang Support vector learning for fuzzy rule-based classification systems IEEE Trans. Fuzzy Systems 11 6 2003 716 728
    • (2003) IEEE Trans. Fuzzy Systems , vol.11 , Issue.6 , pp. 716-728
    • Chen, Y.1    Wang, J.Z.2
  • 11
    • 0000636549 scopus 로고    scopus 로고
    • A clustering algorithm for fuzzy model identification
    • J.-Q. Chen, Y.-G. Xi, and Z.-J. Zhang A clustering algorithm for fuzzy model identification Fuzzy Sets and Systems 98 1998 319 329
    • (1998) Fuzzy Sets and Systems , vol.98 , pp. 319-329
    • Chen, J.-Q.1    Xi, Y.-G.2    Zhang, Z.-J.3
  • 12
    • 0041877699 scopus 로고    scopus 로고
    • A new kernel-based fuzzy clustering approach: Support vector clustering with cell growing
    • J.-H. Chiang, and P.-Y. Hao A new kernel-based fuzzy clustering approach: support vector clustering with cell growing IEEE Trans. Fuzzy Systems 11 4 2003 518 527
    • (2003) IEEE Trans. Fuzzy Systems , vol.11 , Issue.4 , pp. 518-527
    • Chiang, J.-H.1    Hao, P.-Y.2
  • 13
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: A new approach
    • J.-H. Chiang, and P.-Y. Hao Support vector learning mechanism for fuzzy rule-based modeling: a new approach IEEE Trans. Fuzzy Systems 12 1 2004 1 12
    • (2004) IEEE Trans. Fuzzy Systems , vol.12 , Issue.1 , pp. 1-12
    • Chiang, J.-H.1    Hao, P.-Y.2
  • 15
    • 0035217390 scopus 로고    scopus 로고
    • On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules
    • E. Czogała, and J.M. Łski On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules Fuzzy Sets and Systems 117 2 2001 279 296
    • (2001) Fuzzy Sets and Systems , vol.117 , Issue.2 , pp. 279-296
    • Czogała, E.1    Łski, J.M.2
  • 16
    • 0036565280 scopus 로고    scopus 로고
    • Mercer Kernel-based clustering in feature space
    • M. Girolami Mercer Kernel-based clustering in feature space IEEE Trans. Neural Networks 13 3 2002 780 784
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1
  • 17
    • 0042591514 scopus 로고    scopus 로고
    • Support vector fuzzy regression machines
    • D.H. Hong, and C. Hwang Support vector fuzzy regression machines Fuzzy Sets and Systems 138 2 2003 271 281
    • (2003) Fuzzy Sets and Systems , vol.138 , Issue.2 , pp. 271-281
    • Hong, D.H.1    Hwang, C.2
  • 19
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • J.-T. Jeng, C.-C. Chuang, and S.-F. Su Support vector interval regression networks for interval regression analysis Fuzzy Sets and Systems 138 2 2003 283 300
    • (2003) Fuzzy Sets and Systems , vol.138 , Issue.2 , pp. 283-300
    • Jeng, J.-T.1    Chuang, C.-C.2    Su, S.-F.3
  • 23
    • 0001034441 scopus 로고    scopus 로고
    • A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and its applications
    • J.M. Łski, and E. Czogała A new artificial neural network based fuzzy inference system with moving consequents in if-then rules and its applications Fuzzy Sets and Systems 108 3 1999 289 297
    • (1999) Fuzzy Sets and Systems , vol.108 , Issue.3 , pp. 289-297
    • Łski, J.M.1    Czogała, E.2
  • 24
    • 0038141462 scopus 로고    scopus 로고
    • An ε -insensitive approach to fuzzy clustering
    • J.M. Łski An ε -insensitive approach to fuzzy clustering Internat. J. Appl. Math. Comput. Sci. 11 4 2001 993 1007
    • (2001) Internat. J. Appl. Math. Comput. Sci. , vol.11 , Issue.4 , pp. 993-1007
    • Łski, J.M.1
  • 26
    • 33746206970 scopus 로고    scopus 로고
    • ε -insensitive learning techniques for approximate reasoning systems (invited paper)
    • J.M. Łski ε -insensitive learning techniques for approximate reasoning systems (Invited Paper) Internat. J. Comput. Cognition 1 1 2002 21 77
    • (2002) Internat. J. Comput. Cognition , vol.1 , Issue.1 , pp. 21-77
    • Łski, J.M.1
  • 27
    • 0037534035 scopus 로고    scopus 로고
    • Towards a robust fuzzy clustering
    • J.M. Łski Towards a robust fuzzy clustering Fuzzy Sets and Systems 137 2 2003 215 233
    • (2003) Fuzzy Sets and Systems , vol.137 , Issue.2 , pp. 215-233
    • Łski, J.M.1
  • 28
    • 17944398986 scopus 로고    scopus 로고
    • Neuro-fuzzy system with learning tolerant to imprecision
    • J.M. Łski Neuro-fuzzy system with learning tolerant to imprecision Fuzzy Sets and Systems 138 2 2003 427 439
    • (2003) Fuzzy Sets and Systems , vol.138 , Issue.2 , pp. 427-439
    • Łski, J.M.1
  • 29
    • 10744222140 scopus 로고    scopus 로고
    • ε -insensitive fuzzy c -regression models: Introduction to ε -insensitive fuzzy modeling
    • J.M. Łski ε -insensitive fuzzy c -regression models: introduction to ε -insensitive fuzzy modeling IEEE Trans. Systems Man Cybernet. - Part B: Cybernet. 34 1 2004 4 15
    • (2004) IEEE Trans. Systems Man Cybernet. - Part B: Cybernet. , vol.34 , Issue.1 , pp. 4-15
    • Łski, J.M.1
  • 31
    • 0037276906 scopus 로고    scopus 로고
    • Nonlinear blind source separation using kernels
    • D. Martinez, and A. Bray Nonlinear blind source separation using kernels IEEE Trans. Neural Networks 14 1 2003 228 235
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.1 , pp. 228-235
    • Martinez, D.1    Bray, A.2
  • 33
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational systems
    • W. Pedrycz An identification algorithm in fuzzy relational systems Fuzzy Sets and Systems 13 1984 153 167
    • (1984) Fuzzy Sets and Systems , vol.13 , pp. 153-167
    • Pedrycz, W.1
  • 34
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A.J. Smola, and K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 6 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , Issue.6 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 35
    • 0034244959 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for rule extraction
    • M. Setnes Supervised fuzzy clustering for rule extraction IEEE Trans. Fuzzy Systems 8 4 2000 416 424
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.4 , pp. 416-424
    • Setnes, M.1
  • 36
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M. Sugeno, and G.T. Kang Structure identification of fuzzy model Fuzzy Sets and Systems 28 1988 15 33
    • (1988) Fuzzy Sets and Systems , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 40
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. Vapnik An overview of statistical learning theory IEEE Trans. Neural Networks 10 1999 988 999
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.