메뉴 건너뛰기




Volumn 12, Issue 1, 2004, Pages 1-12

Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling: A New Approach

Author keywords

Fuzzy basis function; Fuzzy modeling; Kernel function; Support vector machine

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; ERROR ANALYSIS; GENETIC ALGORITHMS; HEURISTIC METHODS; INTEGRATION; LAGRANGE MULTIPLIERS; LEARNING SYSTEMS; MAPPING; MATRIX ALGEBRA; NEURAL NETWORKS; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 1542333735     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2003.817839     Document Type: Article
Times cited : (195)

References (38)
  • 1
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • Feb.
    • S. Abe and M. S. Lan, "A method for fuzzy rules extraction directly from numerical data and its application to pattern classification," IEEE Trans. Fuzzy Syst., vol. 3, pp. 353-361, Feb. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 353-361
    • Abe, S.1    Lan, M.S.2
  • 2
    • 0000389960 scopus 로고
    • Constructing hidden units using examples and queries
    • San Mateo, CA: Morgan Kaufmann
    • E. B. Baum and K. J. Lang, "Constructing hidden units using examples and queries," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1991, vol. 3, pp. 904-910.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 904-910
    • Baum, E.B.1    Lang, K.J.2
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowledge Disc., vol. 2, no. 2, pp. 955-974, 1998.
    • (1998) Data Mining Knowledge Disc. , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.J.C.1
  • 5
    • 34249753618 scopus 로고
    • Support vector network
    • C. Cortes and V. N. Vapnik, "Support vector network," Mach. Learn., vol. 20, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 7
    • 0030215076 scopus 로고    scopus 로고
    • Fuzzy function approximation with ellipsoidal rules
    • Aug.
    • J. A. Dickerson and B. Kosko, "Fuzzy function approximation with ellipsoidal rules," IEEE Trans. Syst., Man, Cybern., vol. 26, pp. 542-560, Aug. 1996.
    • (1996) IEEE Trans. Syst., Man, Cybern. , vol.26 , pp. 542-560
    • Dickerson, J.A.1    Kosko, B.2
  • 8
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugenics, pt. II, vol. 7, pp. 179-188, 1936.
    • (1936) Ann. Eugenics, Pt. II , vol.7 , pp. 179-188
    • Fisher, R.1
  • 9
    • 0026839028 scopus 로고
    • Nonlinear control via approximate input-output linearization: The ball and beam example
    • Mar.
    • J. Hauser, S. Satry, and P. Kokotovic, "Nonlinear control via approximate input-output linearization: The ball and beam example," IEEE Trans. Automat. Contr., vol. 37, pp. 392-398, Mar. 1992.
    • (1992) IEEE Trans. Automat. Contr. , vol.37 , pp. 392-398
    • Hauser, J.1    Satry, S.2    Kokotovic, P.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedorward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedorward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0029359001 scopus 로고
    • Selecting fuzzy IF-THEN rules for classification probems using genetic algorithms
    • Aug.
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, "Selecting fuzzy IF-THEN rules for classification probems using genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 3, pp. 260-270, Aug. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 12
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/June
    • J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665-685, May/June 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 13
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • Feb.
    • C.-F. Juang and C.-T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, pp. 12-32, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 12-32
    • Juang, C.-F.1    Lin, C.-T.2
  • 14
  • 15
    • 0000612809 scopus 로고
    • Fuzzy basis functions: Comparisons with other basis fonctions
    • May
    • H. M. Kim and J. M. Mendel, "Fuzzy basis functions: Comparisons with other basis fonctions," IEEE Trans. Fuzzy Syst., vol. 3, pp. 158-168, May 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 158-168
    • Kim, H.M.1    Mendel, J.M.2
  • 17
    • 0026989504 scopus 로고
    • Fuzzy systems as universal approximators
    • _, "Fuzzy systems as universal approximators," Proc. IEEE Int. Conf. Fuzzy Syst., pp. 1153-1162, 1992b.
    • (1992) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 1153-1162
  • 19
    • 0025404409 scopus 로고
    • Fuzzy logical in control systems: Fuzzy logic controller, part I
    • Mar./Apr.
    • C.-C. Lee, "Fuzzy logical in control systems: Fuzzy logic controller, part I," IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404-418, Mar./Apr. 1990.
    • (1990) IEEE Trans. Syst., Man, Cybern. , vol.20 , pp. 404-418
    • Lee, C.-C.1
  • 20
    • 0031268065 scopus 로고    scopus 로고
    • An ART-based fuzzy adaptive learning control network
    • Nov.
    • C.-J. Lin and C.-T. Lin, "An ART-based fuzzy adaptive learning control network," IEEE Trans. Fuzzy Syst., vol. 5, pp. 477-496, Nov. 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 477-496
    • Lin, C.-J.1    Lin, C.-T.2
  • 21
    • 0026366218 scopus 로고
    • Neural-network-based fuzzy logic control and decision system
    • Dec.
    • C.-T. Lin and C.-S. G. Lee, "Neural-network-based fuzzy logic control and decision system," IEEE Trans. Comput., vol. 40, pp. 1320-1336, Dec. 1991.
    • (1991) IEEE Trans. Comput. , vol.40 , pp. 1320-1336
    • Lin, C.-T.1    Lee, C.-S.G.2
  • 22
    • 0031146559 scopus 로고    scopus 로고
    • Fuzzy neural network in case-based diagnostic system
    • Z.-Q. Liu and F. Yan, "Fuzzy neural network in case-based diagnostic system," IEEE Trans. Fuzzy Syst., vol. 5, pp. 209-222, 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 209-222
    • Liu, Z.-Q.1    Yan, F.2
  • 23
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • July
    • M. C. Mackey and L. Glass, "Oscillation and chaos in physiological control systems," Science, vol. 197, pp. 287-289, July 1977.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 24
    • 0029270928 scopus 로고
    • Fuzzy logic systems for engineering: A tutorial
    • Mar.
    • J. M. Mendel, "Fuzzy logic systems for engineering: A tutorial," Proc. IEEE, vol. 83, pp. 345-377, Mar. 1995.
    • (1995) Proc. IEEE , vol.83 , pp. 345-377
    • Mendel, J.M.1
  • 25
    • 22044442216 scopus 로고    scopus 로고
    • A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments
    • G. C. Mouzouris and J. M. Mendel, "A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments," J. Intell. Fuzzy Syst., vol. 55, pp. 367-374, 1997.
    • (1997) J. Intell. Fuzzy Syst. , vol.55 , pp. 367-374
    • Mouzouris, G.C.1    Mendel, J.M.2
  • 26
    • 0027695354 scopus 로고
    • Learning control using fuzzified self-organizing radial basis function network
    • Aug.
    • J. Nie and D. A. Linkens, "Learning control using fuzzified self-organizing radial basis function network," IEEE Trans. Fuzzy Syst., vol. 1, pp. 280-287, Aug. 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 280-287
    • Nie, J.1    Linkens, D.A.2
  • 27
    • 0030673582 scopus 로고    scopus 로고
    • Training support vector machines: An application to face detection
    • E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: An application to face detection," in Proc. Comput. Vision Patt. Recogn., 1997, pp. 130-136.
    • (1997) Proc. Comput. Vision Patt. Recogn. , pp. 130-136
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 28
    • 0031140178 scopus 로고    scopus 로고
    • Rule based modeling of nonlinear relationships
    • May
    • W. Pedrycz and M. Reformat, "Rule based modeling of nonlinear relationships," IEEE Trans. Fuzzy. Syst., vol. 5, pp. 256-269, May 1997.
    • (1997) IEEE Trans. Fuzzy. Syst. , vol.5 , pp. 256-269
    • Pedrycz, W.1    Reformat, M.2
  • 29
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks - Part 1: Classification
    • Sept.
    • P. K. Simpson, "Fuzzy min-max neural networks - Part 1: Classification," IEEE Trans. Neural Networks, vol. 3, pp. 776-786, Sept. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 30
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A. J. Smola, B. Schölkopf, and K.-R. Muller, "The connection between regularization operators and support vector kernels," Neural Networks, vol. 11, pp. 637-649, 1998.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Muller, K.-R.3
  • 31
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • GMD
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression,", NeuroCOLT2 Tech. Rep. NC2-TR-1998-030, GMD, 1998b.
    • (1998) NeuroCOLT2 Tech. Rep. , vol.NC2-TR-1998-030
    • Smola, A.J.1    Schölkopf, B.2
  • 32
    • 0028370964 scopus 로고
    • Rule base structure identification in an adaptive network based fuzzy inference system
    • Apr.
    • C.-T. Sun, "Rule base structure identification in an adaptive network based fuzzy inference system," IEEE Trans. Fuzzy Syst., vol. 2, pp. 64-73, Apr. 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , pp. 64-73
    • Sun, C.-T.1
  • 33
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Jan.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, and Cybern., vol. 1, pp. 116-132, Jan. 1985.
    • (1985) IEEE Trans. Syst., Man, and Cybern. , vol.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 36
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Sept.
    • L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Trans. Neural Networks, vol. 3, pp. 807-814, Sept. 1992a.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 37
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • Mar.
    • L. X. Wang, "Fuzzy systems are universal approximators," Proc. IEEE Int. Conf. Fuzzy Systems, pp. 1163-1170, Mar. 1992b.
    • (1992) Proc. IEEE Int. Conf. Fuzzy Systems , pp. 1163-1170
    • Wang, L.X.1
  • 38
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Nov./Dec.
    • L. X. Wang and J. M. Mendel, "Generating fuzzy rules by learning from examples," IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1414-1427, Nov./Dec. 1992c.
    • (1992) IEEE Trans. Syst., Man, Cybern. , vol.22 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.