-
1
-
-
84898957627
-
For valid generalization, the size of the weights is more important than the size of the network
-
P. L. Bartlett, "For valid generalization, the size of the weights is more important than the size of the network," Neural Inform. Process. Syst., vol. 9, pp. 134-140, 1997.
-
(1997)
Neural Inform. Process. Syst.
, vol.9
, pp. 134-140
-
-
Bartlett, P.L.1
-
2
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important then the size of network
-
Feb.
-
_, "The sample complexity of pattern classification with neural networks: The size of the weights is more important then the size of network," IEEE Trans. Inform. Theory, vol. 44, pp. 525-536, Feb. 1998.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 525-536
-
-
-
4
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA
-
B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. Workshop Comput. Learning Theory, Pittsburgh, PA, 1992, pp. 144-152.
-
(1992)
Proc. 5th Annu. Workshop Comput. Learning Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
5
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
Cambridge, MA: MIT Press
-
G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advanced Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol. 13.
-
(2001)
Advanced Neural Information Processing Systems
, vol.13
-
-
Cauwenberghs, G.1
Poggio, T.2
-
8
-
-
0024374781
-
International application of a new probability algorithm for the diagnosis of coronary artery disease
-
R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J. Schmid, S. Sandhu, K. Guppy, S. Lee, and V. Froelicher, "International application of a new probability algorithm for the diagnosis of coronary artery disease," Amer. J. Cardiol., vol. 64, pp. 304-310, 1989.
-
(1989)
Amer. J. Cardiol.
, vol.64
, pp. 304-310
-
-
Detrano, R.1
Janosi, A.2
Steinbrunn, W.3
Pfisterer, M.4
Schmid, J.5
Sandhu, S.6
Guppy, K.7
Lee, S.8
Froelicher, V.9
-
9
-
-
0042434885
-
Ensemble learning
-
M. A. Arbib, Ed. Cambridge, MA: MIT Press
-
T. G. Dietterich, "Ensemble learning," in The Handbook of the Brain Theory and Neural Networks, 2nd ed, M. A. Arbib, Ed. Cambridge, MA: MIT Press, 2002.
-
(2002)
The Handbook of the Brain Theory and Neural Networks, 2nd Ed
-
-
Dietterich, T.G.1
-
13
-
-
0000631731
-
Bayes point machines
-
R. Herbrich, T. Graepel, and C. Campbell, "Bayes point machines," J. Machine Learning Res., vol. 1, pp. 245-279, 2001.
-
(2001)
J. Machine Learning Res.
, vol.1
, pp. 245-279
-
-
Herbrich, R.1
Graepel, T.2
Campbell, C.3
-
15
-
-
0001259521
-
An algorithm for linear inequalities and its applications
-
Y.-C. Ho and R. L. Kashyap, "An algorithm for linear inequalities and its applications," IEEE Trans. Elect. Comput., vol. 14, pp. 683-688, 1965.
-
(1965)
IEEE Trans. Elect. Comput.
, vol.14
, pp. 683-688
-
-
Ho, Y.-C.1
Kashyap, R.L.2
-
16
-
-
0004162309
-
A class of iterative procedures for linear inequalities
-
_, "A class of iterative procedures for linear inequalities," J.SIAM Contr., vol. 4, pp. 112-115, 1966.
-
(1966)
J. SIAM Contr.
, vol.4
, pp. 112-115
-
-
-
18
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
T. Joachims, "Making large-scale support vector machine learning practical," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 169-184.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
19
-
-
0033485370
-
Ensemble learning via negative correlation
-
Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Networks, vol. 12, pp. 1399-1404, 1999.
-
(1999)
Neural Networks
, vol.12
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
20
-
-
0003408791
-
-
Data Mining Inst., Comput. Sci. Dept., Univ. Wisconsin, Madison, WI, 00-06
-
O. L. Mangasarian and D. R. Musicant, "Lagrangian Support Vector Machines," Data Mining Inst., Comput. Sci. Dept., Univ. Wisconsin, Madison, WI, 00-06, 2000.
-
(2000)
Lagrangian Support Vector Machines
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
21
-
-
0030412880
-
A global optimization technique for statistical classifier design
-
Dec.
-
D. Miller, A. V. Rao, K. Rose, and A. Gersho, "A global optimization technique for statistical classifier design," IEEE Trans. Signal Processing, vol. 44, pp. 3108-3121, Dec. 1996.
-
(1996)
IEEE Trans. Signal Processing
, vol.44
, pp. 3108-3121
-
-
Miller, D.1
Rao, A.V.2
Rose, K.3
Gersho, A.4
-
23
-
-
0031334889
-
An improved training algorithm for support vector machines
-
E. Osuna, R. Freund, and F. Girosi, "An improved training algorithm for support vector machines," Proc. IEEE Workshop Neural Networks Signal Process., pp. 276-285, 1997.
-
(1997)
Proc. IEEE Workshop Neural Networks Signal Process.
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
24
-
-
0003120218
-
Sequential minimal optimization: A fast algorithm for training support vector machines
-
B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
-
J. Platt, "Sequential minimal optimization: A fast algorithm for training support vector machines," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
26
-
-
0003539213
-
The MONK'S problems. A performance comparison of different learning algorithms
-
Carnegie Mellon Univ., Pittsburgh, PA
-
S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong, S. Deroski, S. E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger, R. S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, W. Van de Welde, W. Wenzel, J. Wnek, and J. Zhang, "The MONK'S problems. A performance comparison of different learning algorithms," Carnegie Mellon Univ., Pittsburgh, PA, Scientific Rep. CMU-CS-91-197, 1991.
-
(1991)
Scientific Rep.
, vol.CMU-CS-91-197
-
-
Thrun, S.B.1
Bala, J.2
Bloedorn, E.3
Bratko, I.4
Cestnik, B.5
Cheng, J.6
De Jong, K.7
Deroski, S.8
Fahlman, S.E.9
Fisher, D.10
Hamann, R.11
Kaufman, K.12
Keller, S.13
Kononenko, I.14
Kreuziger, J.15
Michalski, R.S.16
Mitchell, T.17
Pachowicz, P.18
Reich, Y.19
Vafaie, H.20
Van de Welde, W.21
Wenzel, W.22
Wnek, J.23
Zhang, J.24
more..
-
27
-
-
23044525572
-
Scaling kernel-based systems to large data sets
-
V. Tresp, "Scaling kernel-based systems to large data sets," Data Mining Knowledge Discovery, vol. 5, no. 3, pp. 1-18, 2001.
-
(2001)
Data Mining Knowledge Discovery
, vol.5
, Issue.3
, pp. 1-18
-
-
Tresp, V.1
-
31
-
-
0032594959
-
An overview of statistical learning theory
-
May
-
_, "An overview of statistical learning theory," IEEE Trans. Neural Networks, vol. 10, pp. 988-999, May 1999.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 988-999
-
-
|