메뉴 건너뛰기




Volumn 34, Issue 1, 2004, Pages 68-76

An ε-Margin Nonlinear Classifier Based on Fuzzy if-then Rules

Author keywords

Classifier design; Committee machines; Fuzzy if then rules; Local and global learning; VCtheory

Indexed keywords

APPROXIMATION THEORY; CHARACTER RECOGNITION; CLASSIFIERS; COMMUNICATION; COMPUTER VISION; DATA MINING; DATABASE SYSTEMS; DIAGNOSIS; FUNCTIONS; FUZZY SETS; LEARNING SYSTEMS; PARAMETER ESTIMATION; PROBLEM SOLVING; ROBUSTNESS (CONTROL SYSTEMS);

EID: 10744225883     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2002.805811     Document Type: Article
Times cited : (33)

References (32)
  • 1
    • 84898957627 scopus 로고    scopus 로고
    • For valid generalization, the size of the weights is more important than the size of the network
    • P. L. Bartlett, "For valid generalization, the size of the weights is more important than the size of the network," Neural Inform. Process. Syst., vol. 9, pp. 134-140, 1997.
    • (1997) Neural Inform. Process. Syst. , vol.9 , pp. 134-140
    • Bartlett, P.L.1
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important then the size of network
    • Feb.
    • _, "The sample complexity of pattern classification with neural networks: The size of the weights is more important then the size of network," IEEE Trans. Inform. Theory, vol. 44, pp. 525-536, Feb. 1998.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 525-536
  • 5
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Cambridge, MA: MIT Press
    • G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advanced Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, vol. 13.
    • (2001) Advanced Neural Information Processing Systems , vol.13
    • Cauwenberghs, G.1    Poggio, T.2
  • 15
    • 0001259521 scopus 로고
    • An algorithm for linear inequalities and its applications
    • Y.-C. Ho and R. L. Kashyap, "An algorithm for linear inequalities and its applications," IEEE Trans. Elect. Comput., vol. 14, pp. 683-688, 1965.
    • (1965) IEEE Trans. Elect. Comput. , vol.14 , pp. 683-688
    • Ho, Y.-C.1    Kashyap, R.L.2
  • 16
    • 0004162309 scopus 로고
    • A class of iterative procedures for linear inequalities
    • _, "A class of iterative procedures for linear inequalities," J.SIAM Contr., vol. 4, pp. 112-115, 1966.
    • (1966) J. SIAM Contr. , vol.4 , pp. 112-115
  • 18
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
    • T. Joachims, "Making large-scale support vector machine learning practical," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 19
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao, "Ensemble learning via negative correlation," Neural Networks, vol. 12, pp. 1399-1404, 1999.
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 21
    • 0030412880 scopus 로고    scopus 로고
    • A global optimization technique for statistical classifier design
    • Dec.
    • D. Miller, A. V. Rao, K. Rose, and A. Gersho, "A global optimization technique for statistical classifier design," IEEE Trans. Signal Processing, vol. 44, pp. 3108-3121, Dec. 1996.
    • (1996) IEEE Trans. Signal Processing , vol.44 , pp. 3108-3121
    • Miller, D.1    Rao, A.V.2    Rose, K.3    Gersho, A.4
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press
    • J. Platt, "Sequential minimal optimization: A fast algorithm for training support vector machines," in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, J. C. Burges, and A. J. Smola, Eds. Cambridge, MA: MIT Press, 1999, pp. 185-208.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 27
    • 23044525572 scopus 로고    scopus 로고
    • Scaling kernel-based systems to large data sets
    • V. Tresp, "Scaling kernel-based systems to large data sets," Data Mining Knowledge Discovery, vol. 5, no. 3, pp. 1-18, 2001.
    • (2001) Data Mining Knowledge Discovery , vol.5 , Issue.3 , pp. 1-18
    • Tresp, V.1
  • 31
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • May
    • _, "An overview of statistical learning theory," IEEE Trans. Neural Networks, vol. 10, pp. 988-999, May 1999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-999


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.