메뉴 건너뛰기




Volumn 55, Issue 2, 2003, Pages 371-389

New approaches to statistical learning theory

Author keywords

Concentration inequalities; Error bounds; Rademacher averages; Statistical learning theory

Indexed keywords

BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; ERROR ANALYSIS; FUNCTION EVALUATION; LEARNING ALGORITHMS; PROBABILITY; STATISTICAL METHODS;

EID: 3142681333     PISSN: 00203157     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1026303510251     Document Type: Conference Paper
Times cited : (44)

References (18)
  • 1
    • 0041805140 scopus 로고
    • A result of Vapnik with applications
    • Anthony, M. and Shawe-Taylor, J. (1993). A result of Vapnik with applications, Discrete Appl. Math., 47, 207-217.
    • (1993) Discrete Appl. Math. , vol.47 , pp. 207-217
    • Anthony, M.1    Shawe-Taylor, J.2
  • 2
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Bartlett, P. and Mendelson, S. (2002). Rademacher and gaussian complexities: Risk bounds and structural results, Journal of Machine Learning Research, 3, 463-482.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelson, S.2
  • 6
    • 0034344120 scopus 로고    scopus 로고
    • A sharp concentration inequality with applications
    • Boucheron, S., Lugosi, G. and Massart, P. (2000). A sharp concentration inequality with applications, Random Structures Algorithms, 16(3), 277-292.
    • (2000) Random Structures Algorithms , vol.16 , Issue.3 , pp. 277-292
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3
  • 7
    • 12444305961 scopus 로고    scopus 로고
    • Concentration inequalities using the entropy method
    • to appear
    • Boucheron, S., Lugosi, G. and Massart, P. (2002). Concentration inequalities using the entropy method, Ann. Probab. (to appear).
    • (2002) Ann. Probab.
    • Boucheron, S.1    Lugosi, G.2    Massart, P.3
  • 8
    • 0037561860 scopus 로고    scopus 로고
    • A Bennett concentration inequality and its application to suprema of empirical processes
    • Bousquet, O. (2002a). A Bennett concentration inequality and its application to suprema of empirical processes, Computes Rendus Mathématique Academie des Sciences. Paris, 334, 495-500.
    • (2002) Computes Rendus Mathématique Academie des Sciences. Paris , vol.334 , pp. 495-500
    • Bousquet, O.1
  • 11
    • 0001166808 scopus 로고    scopus 로고
    • Rademacher processes and bounding the risk of function learning
    • eds.E. Gine,D. Mason andJ. Wellner
    • Koltchinskii,V. and Panchenko,D. (2000). Rademacher processes and bounding the risk of function learning, High Dimensional Probability II (eds.E. Gine,D. Mason andJ. Wellner), 443-459.
    • (2000) High Dimensional Probability II , vol.2 , pp. 443-459
    • Koltchinskii, V.1    Panchenko, D.2
  • 13
    • 0000595627 scopus 로고    scopus 로고
    • Some applications of concentration inequalities to statistics
    • Massart,P. (2000). Some applications of concentration inequalities to statistics, Ann. Fac. Sci. Toulouse Math. (6), 9(2), 245-303.
    • (2000) Ann. Fac. Sci. Toulouse Math.(6) , vol.9 , Issue.2 , pp. 245-303
    • Massart, P.1
  • 17
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik,V. and Chervonenkis,A. (1971). On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 16, 264-280.
    • (1971) Theory Probab. Appl. , vol.16 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 18
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency of the method of empirical risk minimization
    • Vapnik,V. and Chervonenkis,A. (1991). The necessary and sufficient conditions for consistency of the method of empirical risk minimization, Pattern Recognition and Image Analysis, 1(3), 284-305.
    • (1991) Pattern Recognition and Image Analysis , vol.1 , Issue.3 , pp. 284-305
    • Vapnik, V.1    Chervonenkis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.