메뉴 건너뛰기




Volumn 11, Issue 2, 2000, Pages 323-337

On the optimality of neural-network approximation using incremental algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; ERROR ANALYSIS;

EID: 0033732457     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.839004     Document Type: Article
Times cited : (31)

References (43)
  • 3
    • 85156194133 scopus 로고    scopus 로고
    • Exponentially many local minima for single neurons
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambodge, MA: MIT Press
    • P. Auer, M. Herbster, and M. Warmuth, "Exponentially many local minima for single neurons," in Advances in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambodge, MA: MIT Press, 1996, pp. 316-322.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 316-322
    • Auer, P.1    Herbster, M.2    Warmuth, M.3
  • 4
    • 0027599793 scopus 로고
    • Universal approximation bound for superpositions of a sigmoidal function
    • A. R. Barron, "Universal approximation bound for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 5
    • 0003073642 scopus 로고
    • Statistical learning networks: A unifying view
    • E. Wegman, Ed.. Washington, D.C.
    • A. R. Barron and R. L. Barron, "Statistical learning networks: a unifying view," in Comput. Sci. Statist.: Proc. 20th Symp. Interface, E. Wegman, Ed.. Washington, D.C., 1988, pp. 192-203.
    • (1988) Comput. Sci. Statist.: Proc. 20th Symp. Interface , pp. 192-203
    • Barron, A.R.1    Barron, R.L.2
  • 6
    • 0013037041 scopus 로고    scopus 로고
    • Almost linear vc dimension bounds for piecwise polynomial networks
    • P. L. Bartlett, V. Maiorov, and R. Meir, "Almost linear vc dimension bounds for piecwise polynomial networks," Neural Comput., vol. 10, pp. 2159-2173, 1998.
    • (1998) Neural Comput. , vol.10 , pp. 2159-2173
    • Bartlett, P.L.1    Maiorov, V.2    Meir, R.3
  • 9
    • 0002786665 scopus 로고
    • Spline approximation by quasiinterpolation
    • C. de Boor and G. Fix, "Spline approximation by quasiinterpolation," J. Approx. Theory, vol. 7, pp. 19-45, 1973.
    • (1973) J. Approx. Theory , vol.7 , pp. 19-45
    • De Boor, C.1    Fix, G.2
  • 10
    • 0029207175 scopus 로고
    • n) by multilayer feedforward networks and related problems
    • n) by multilayer feedforward networks and related problems," IEEE Trans. Neural Networks, vol. 6, no. 1, pp. 25-30, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 25-30
    • Chen, H.1    Chen, T.2    Liu, R.3
  • 11
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Contr., Signals, Syst., vol. 2, pp. 303-314, 1989.
    • (1989) Math. Contr., Signals, Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 13
    • 85009724776 scopus 로고    scopus 로고
    • Nonlinear approximation
    • R. DeVore, "Nonlinear approximation," Acta Numerica, vol. 7, pp. 51-151, 1998.
    • (1998) Acta Numerica , vol.7 , pp. 51-151
    • DeVore, R.1
  • 15
  • 16
    • 0029717957 scopus 로고    scopus 로고
    • A note on error bounds for approximation in innerproduct spaces
    • A. T. Dingankar and I. W. Sandberg, "A note on error bounds for approximation in innerproduct spaces," Circuits, Syst., Signal Processing, vol. 15, no. 4, pp. 519-522, 1996.
    • (1996) Circuits, Syst., Signal Processing , vol.15 , Issue.4 , pp. 519-522
    • Dingankar, A.T.1    Sandberg, I.W.2
  • 17
    • 0031624051 scopus 로고    scopus 로고
    • A note on errorbounds for function approximation using nonlinear networks
    • I. W. Dingankar and A. T. Sandberg, "A note on errorbounds for function approximation using nonlinear networks," Circuits, Syst. Signal Processing, vol. 17, no. 4, pp. 449-457, 1998.
    • (1998) Circuits, Syst. Signal Processing , vol.17 , Issue.4 , pp. 449-457
    • Dingankar, I.W.1    Sandberg, A.T.2
  • 19
    • 0000742672 scopus 로고
    • Wavelet shrinkage: Asymptopia?
    • D. L. Donoho and I. M. Johnstone, "Wavelet shrinkage: Asymptopia?," J. Royal Statist. Soc. B, vol. 57, no. 2, pp. 301-369, 1995.
    • (1995) J. Royal Statist. Soc. B , vol.57 , Issue.2 , pp. 301-369
    • Donoho, D.L.1    Johnstone, I.M.2
  • 20
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Labiere, "The cascade-correlation learning architecture," in Advances in Neural Information Processing Systems, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990.
    • (1990) Advances in Neural Information Processing Systems
    • Fahlman, S.E.1    Labiere, C.2
  • 22
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Networks, vol. 2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal function approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal function approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 25
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rate for projection pursuit regression and neural network training
    • L. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rate for projection pursuit regression and neural network training," Ann. Statist., vol. 20, pp. 608-613, 1992.
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.1
  • 26
    • 0001556720 scopus 로고    scopus 로고
    • Efficient Agnostic learning of neural networks with bounded fan-in
    • W. S. Lee, P. S. Bartlett, and R. C. Williamson, "Efficient Agnostic learning of neural networks with bounded fan-in," IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 2118-2132, 1996.
    • (1996) IEEE Trans. Inform. Theory , vol.42 , Issue.6 , pp. 2118-2132
    • Lee, W.S.1    Bartlett, P.S.2    Williamson, R.C.3
  • 27
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, S.4
  • 29
    • 0002667327 scopus 로고    scopus 로고
    • On best approximation by ridge functions
    • V. E. Maiorov, "On best approximation by ridge functions," J. Approx. Theory, vol. 99, pp. 68-94, 1999.
    • (1999) J. Approx. Theory , vol.99 , pp. 68-94
    • Maiorov, V.E.1
  • 30
    • 0034395382 scopus 로고    scopus 로고
    • On the near optimality of the stochastic approximation of smooth functions by neural network
    • to be published
    • V. E. Maiorov and R. Meir, "On the near optimality of the stochastic approximation of smooth functions by neural network," Advances Computa. Math., 2000, to be published.
    • (2000) Advances Computa. Math.
    • Maiorov, V.E.1    Meir, R.2
  • 31
    • 0033239776 scopus 로고    scopus 로고
    • On the degree of approximation using manifolds of finite pseudo-dimension
    • V. E. Maiorov and J. Ratsaby, "On the degree of approximation using manifolds of finite pseudo-dimension," J. Constr. Approx., vol. 15, pp. 291-300, 1999.
    • (1999) J. Constr. Approx. , vol.15 , pp. 291-300
    • Maiorov, V.E.1    Ratsaby, J.2
  • 33
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H. Mhaskar, "Neural networks for optimal approximation of smooth and analytic functions," Neural Computa., vol. 8, no. 1, pp. 164-177, 1996.
    • (1996) Neural Computa. , vol.8 , Issue.1 , pp. 164-177
    • Mhaskar, H.1
  • 34
    • 0040304049 scopus 로고
    • Transform analysis of generalized functions
    • Amsterdam, The Netherlands: North-Holland
    • O. P. Misra and J. L. Lavoine, "Transform analysis of generalized functions," in North-Holland Math Studies. Amsterdam, The Netherlands: North-Holland, 1986.
    • (1986) North-Holland Math Studies
    • Misra, O.P.1    Lavoine, J.L.2
  • 36
    • 0032283665 scopus 로고    scopus 로고
    • Aproximation by ridge functions and neural networks
    • P. P. Petrushev, "Aproximation by ridge functions and neural networks," SIAM J. Math. Anal., vol. 30, pp. 155-189, 1998.
    • (1998) SIAM J. Math. Anal. , vol.30 , pp. 155-189
    • Petrushev, P.P.1
  • 38
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the mlp model in neural networks
    • A. Pinkus, "Approximation theory of the mlp model in neural networks," Acta Numerica, vol. 8, pp. 143-195, 1999.
    • (1999) Acta Numerica , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 39
    • 0009270747 scopus 로고    scopus 로고
    • The best m-term approximation and greedy algorithms
    • V N. Temlyakov, "The best m-term approximation and greedy algorithms," Advances in Computa. Math., vol. 8, no. 3, pp. 249-265, 1998.
    • (1998) Advances in Computa. Math. , vol.8 , Issue.3 , pp. 249-265
    • Temlyakov, V.N.1
  • 43
    • 33749959565 scopus 로고
    • ser. Regional Conference Series in Aplied Mathematics. Philadelphia, PA: SIAM
    • G. Wahba, Spline Models for Observational Data, ser. Regional Conference Series in Aplied Mathematics. Philadelphia, PA: SIAM, 1990.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.